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EXECUTIVE SUMMARY

Objectives

A regional landscape s mulation model that can address the effects of different management
scenarios on the ecosystems in the Evergladesis being developed as part of the integrated
Everglades Research Plan of the South Florida Water Management District (SFWMD).
The Everglades Landscape Model (ELM) will be one of the principal toolsin a systematic
analysis of the varying options in managing the distribution of water and nutrients in the
Everglades. It will:

1) provide atool to estimate the water demands of the Everglades in terms of adequacy of
water flow and water levels to achieve user-defined landscape/ecosystem characteristics,

2) predict changesin vegetation that result from specific hydrology and water quality regimes,
simulating the inter-relationships among water quality, hydrology, and vegetation, and thus
the influence of these relationships on habitat quality; and

3) take advantage of sophisticated hardware/software, alowing the model to be easy to use
and modify.

Model structure

Central to the ELM structureis the division of the landscape into square grid cells
(10,178 in this implementation) that are used to identify components of the landscapein digital
form. Superimposed on this grid network are the vector lines of canals that cross the region.
Using avariety of state-of-the-art software tools and hardware, the ELM isaregional scale,
gpatialy articulated simulation model that incorporates four fundamental pieces.

* First, the model parameters that are constant within a given habitat (such as maximum specific
rate of plant primary production), and the time series data (such as rainfall) that drive the
model are contained in customized data bases for input to the model.

» Secondly, spatial data of attributes such as habitat type and elevation that may vary
significantly within the landscape are contained in digital map files.

* The third principal component of the ELM structure isthe “unit” model. It isthe most basic
building block of the ELM, simulating the temporal dynamics of important biological and
physical processes within ecosystems found in the Everglades. Different habitats within
the model have unique parameter sets determined within the databases, but all habitats run
with the same general unit model structure.

*» The cellsare linked by the spatial articulation of the ELM, providing the mechanism for
water, and its dissolved and suspended matter, to flow between cells and through canals.
Thisisthe fourth component of the ELM: this spatial modeling code drives the ELM by
integrating al of the components, providing the mechanism for changing the landscape
with time (succession), and coordinating input/output.

The computer platform that the ELM optimally usesisthat of aparallel processing
environment. We currently are running the model on 24 transputersthat are installed in a high-
end Macintosh computer serving as the front end, providing an interface that greatly facilitates
the use of themodel. We also have the capability to use amassively parallel supercomputer
(CM-5) or, less optimally, the drivers are available to run the code on Unix workstations.

Model boundaries and scales

Figure 1 and the cover of the report indicate the ELM boundaries, which basically
encompass the natural system of the Everglades and Big Cypress, omitting the urban areas of
the lower East Coast and the agricultural regions. These boundaries alleviate the need to model
the significant complexity of the latter areas, yet provide a smulation tool to analyze the
response of the natural system to atered hydrologic and nutrient regimes due to management
decisions.

Also shown in Figure 1 isthe 1 km?2 grid cell sizein relation to the model area. We
currently make the assumption that each cell is homogenous in its vegetation composition and
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other characterigtics, but will be incorporating statistically weighted model parameters (such as
plant primary production rates) in proportion to the area of different habitat typesin each cell.
The model runs with adaily time step, and is scaled to exhibit monthly or seasona changesin
model results such as plant biomass or species composition. Typical scenario simulations will
encompass several decades, perhaps as many as 50 years depending on the objective.

Processes simulated

The ELM simulates fundamental ecological processes with the objective of quantifying
the response of vegetation to the varying environment. Hydrology is fundamental to the
model, with 3-dimensional flow of water within the landscape. Many of the hydrologic
algorithms are based on those devel oped for the South Florida Water Management Model, but
with some changes towards finer scales and in some aspects of the mass balance accounting.
The growth of the macrophyte and periphyton communities responds to available nutrients,
water, sunlight and temperature using documented algorithms. The hydrology in the model
responds directly in turn to the vegetation via linkages such as the Manning’ s roughness
coefficients dependence on dynamic plant density and composition, and transpiration |osses
being dependent not only on physical heat flux but on plant canopy conductance and response
to water limitation. The nutrient cycles of both phosphorus and nitrogen are smulated so that a
basic, but realistic, portrayal of the availability of nutrientsis possible. Fireisan important
part of the simulation and is based on avariety of habitat characteristics such afuel quality and
moisture. By keeping track of the historical nutrient availability, hydroperiod, and fire severity
of the cellsin the model, a (developing) habitat transition algorithm alters the habitat pattern and
associated model parameters.

Utility

The ELM isatool to analyze the interaction of hydrology, nutrients, and vegetation
growth on a systematic, landscape level scale. The degree of complexity associated with its
development has been incrementally increasing as the model devel opment process continued.
One of the key issues that has 9 owed some development has been obtaining appropriate
hydrologic data, including exact cana and levee locations and attributes, soil types, and
accurate elevation data. Similarly, one of the principal issues that needs addressing in the near
and long term for amore accurate ELM isthat of strengthening the available ecological dataset.
Though there are data that can support the ELM for areasonable degree of utility, amore
systematic research program is desirable to obtain better estimates for elevation, rainfall and
evaporation throughout the region. Biological processes such as nutrient requirements by
plants and succession are incompletely known, as are estimates of plant growth, senescence
and mortality over time.

Asthe ELM stands, the major model developmental steps and their implementation
have been achieved. We have dl of the mgjor structura attributes in place in the model, with
the associated computational algorithms. At this point, we will be beginning the extensive
calibration and verification stages, then completing the project by producing specific scenario
analyses and making the model available for use by the District.

Code/databases delivered

In addition to various documents (including this one) that report on descriptions of the
model development and initial results, the following components of the ELM have been
transferred to the District. Integration of al of these componentsisthe ELM.

Unit model

« A 20 state variable, ecosystem-level model. Written and debugged using STELLA®
dynamic simulation software package. Calibrated to alow/moderate level of confidence
depending on the habitat involved.

1 25 state variables appear in the unit model diagram, but 5 of those have that designation due to specific
characteristics of the STELLA ™ modeling program and do not represent standing stocks.
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STELLA®-to-C code Translator
« Trandates equations output from debugged STELLA® model into C code for running

simulation without STELLA®. An executable program that runs on Macintosh computers, it
was written in the C programming language using ANSI standards.

Spatial M odeling Package
» Code that integrates data (spatial and non-spatia), the unit model, and interface(s) to run a
simulation in space and time. Written in ANSI C code, the drivers are written for transputers
installed in Macintosh computers, amassively parallel CM-5 supercomputer, and Sun
workstations.

Canal routing algorithms
* Algorithms (and explanatory text) to place cana vectors over araster grid of landscape cdlls,
determining the exact area of interaction between canals and the cells. These algorithms
(mostly developed) also allow the implementation of the SFWMD’ s (serial) canal flux
algorithm into aform that runsin the parallel processing environment that the ELM uses.

Habitat-specific databases
 Series of linked, pseudo-relational databases for the ecological/hydrologic datain the habitats

smulated in the ELM. Developed using Filemaker® Pro for the Macintosh, each contains the
numeric data and comments, citations, and other data attributes. These habitat databases are
linked into one Central database which exports one datafile to the Spatial M odeling Package.

Spatial databases
* Set of Geographic Information System (GIS) databases including land use in 1900, 1953
and 1973, elevation, permeability, and other spatia datafor direct input to the spatial model.

All arein 1 km? raster format using MAP 11® on the Macintosh, and can be exported to other
GI S packages such as GRASS and ARC/INFO.

Unit model interface
» Guideto the model structure, smulation capabilities, and assumptions. Developed using
HyperCard, which isagraphical based, hypertext language for the Macintosh computer. This
interface enables more effective communication and understanding of the processes that are
incorporated into the unit model.

Database interface
* Guideto the databases for each biological habitat smulated in the ELM. Developed using
HyperCard for the Macintosh, this provides an overview of the structure of the databases and
thelir linkages.

Spatial model interface
 Guideto editing the runtime parameters, including input data and output data needs.
Developed using HyperCard for the Macintosh, this provides a user friendly means of
implementing a spatial smulation run for varying scenarios.
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INTRODUCTION

Scope of report

We have previously (Costanza et al., 1992a; Costanza et al., 1992b; Costanza et al.,
1992c) provided reports on: a) the steps in conceptualizing the Everglades Landscape Model
(ELM) viaaworkshop process; and b) significant aspects of the model structure and processes
that were to be smulated. With approval from the South Florida Water Management Didtrict,
we then proceeded with full model development, and have designed and implemented the large
number of components of the spatialy articulated ELM. Because our feasibility assessment
report (Costanza et al., 1992¢) described many of the fundamental attributes of the model, we
will not repeat such information in detail within the current report. This report describes many
of the algorithms and development steps that were previoudy outlined. Thisincludesthe
algorithms for ssimulating ecological processes, the logic of water flow within canal networks
and the canal-cell interactions, our means of data organization, the steps in map processing,
means of evaluating scale-dependent issues, and the software that integrates most of these
model components. Inamodel of thislarge areal extent and process complexity, compromises
between decreasing computational complexity and increasing realism are necessary. Many of
the issues associated with this tradeoff were discussed in the series of workshops described in
the referenced reports. In the current report, the arguments behind various decisions are not
reiterated. Thus, for the reader to understand much of the rationale behind the ELM
conceptualization, a perusal of the prior feasibility assessment report (Costanza et al., 1992c) is
recommended.

The scope of the current report is of a more technical nature, wherein we show how the
concepts have been implemented into working agorithms and models. At this point, we have
developed virtually al of the components of the ELM, and are about to integrate them into the
ELM for calibration. However, we believe that improvements in some of the modules will
occur as we run the model in the calibration process. In particular, we hope that this report
may allow othersinvolved in the prior stages of development to point out aspects of the model
that could benefit from either smpler or more sophisticated structure. We present this report as
amore detailed representation of how the ELM is being implemented, but NOT asthefina
version that will be presented in the final report of Task 3. The contents of this report represent
working versions of the model and carefully designed algorithms that are about to be fully
integrated into the working, spatially explicit ELM. We welcome feedback in the very near
future.

ELM function

The ELM isto serve as one of the principal toolsin a systematic analysis of the varying
options in managing the distribution of water and nutrients in the Everglades. Water quantity,
and the associated hydroperiod, has been a central issue in understanding the ecosystem health
(Costanza et al., 1992) of the Everglades. Nutrients from agricultural areas also appear to be
important in understanding vegetation succession (Davis, 1991) in this historically oligotrophic
system (Steward and Ornes, 1975). The interaction of these factors, including the frequency
and severity of fires, appearsto drive the succession of the plant communitiesin the Everglades
(Duever, 1984; Gunderson, 1989). Thusthis system has myriad indirect interactions,
constraints and feedbacks that result in complex ecosystem structure (biotic and abiotic
components and their flow pathways) and function (the modes of interaction and their rates).
For thisreason, it is critical to develop a systems viewpoint towards understanding the
dynamics inherent in that ecosystem structure and function. Part of this processisthe
development of adynamic spatial smulation model. The ELM will provide that analytic tool.

In this model, the important ecosystem processes that shape plant communities are
simulated within the varying habitats distributed throughout the landscape. The principal
dynamics within the model are: plant growth in response to available sunlight, temperature,
nutrients, and water; flow of water plus dissolved nutrients in three dimensions; fireinitiation
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and propagation; and succession in the plant community in response to the historical
environment. Using a mass balance approach in incorporating process-based data of a
reasonably high resolution within the entire Everglades landscape, changing spatial patterns
and processes can be analyzed within the context of altered management strategies. Only by
incorporating spatial articulation can an ecological model redlistically address large scale
management issues within the vast, heterogeneous system of the Everglades.

ELM structure
For the spatially explicit ELM, the modeled landscape will be partitioned into a spatial

grid of 10,178 square unit cells, each having 1 km?2 surface area. The ELM is hierarchical in
structure, incorporating an ecosystem-level "unit” model that is replicated in each of the unit
cells representing the Everglades landscape (Figure 2). The unit moddl itself isdivided into a
set of model sectors that simulate the important ecological (including physical) dynamicsusing
aprocess oriented, mass balance approach. The hydrologic sector of the unit model isa
fundamental driving force, simulating water flow vertically within the cell . Hydrology and
hydrodynamics, nutrient, plant, consumer, fire, detritus, and sediment dynamics are some of
processes that are simulated within sectors of the unit model. While the unit model simulates
ecologica processes within aunit cell, horizontal fluxes across the landscape will occur within
the domain of the broader spatial model of the ELM. Such fluxes will be driven by cell-cell
head differences of surface water and of ground water in saturated storage. Within this spatial
context, the water fluxes between cells carry dissolved and suspended materials, determining
water quality in the landscape.

Wheresas the same generic unit model structure will be run in each cdll, there isa suite
of parameter setsthat will serve asinput to the model to accommodate the different habitat
types within the landscape. Asindicated in Figure 2, a set of values of standing stocks, rate
parameters, etc. that are specific to the cell’ s habitat type will be input to the unit model for each
unit cell. The vegetation communitiesin the cells will respond to changing hydrologic, nutrient
and fire regimes via successional switching algorithms which are defined by current ecological
knowledge. Thus, when run within the spatial framework of the overall ELM, the landscape
response to hydrology and water quality will be effectively ssimulated as flows of material occur
between adjacent cells.

This modeling project encompasses the interactions of awide range of biological and
physical processesto simulate ecosystem dynamics over alarge landscape. Thereforethis
model has afairly high degree of complexity, both conceptualy in the detail of processes, and
computationally in the implementation of fine scale process equations over alarge spatia
extent. For acomplex model such asthis, it isimportant that its design and results be
effectively communicated to others; i.e., the model would be less useful if it were not well-
understood for evaluation. In order to communicate the model’ s design and assumptions, we
employed software tools that we have devel oped and that are available commercially. While
the ELM is comple, its focus and assumptions are more easily understood than would be the
case using standard software tools. For running the model, we are using state-of-the-art
transputersthat are ideally suited to grid based spatial modeling, yet are economical enough to
be practical for desktop computing?. The ELM is running approximately 10,000 ecosystem
level models at once, each communicating results to neighboring cells. Because the same
problem (unit model) can be distributed across many processors, a parallel (distributed)
processing environment is an efficient architecture for running the spatial model. We believe
that the hardware and easy to use software components of the ELM will aid in making it more
available and usable to the research and management community.

2 The ELM is not limited to a transputer-based architecture. See the Spatial Model Hardware section for
information on the other computer platforms that may be used to run the ELM.
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UNIT MODEL

Overview

Because of the heterogeneity of the habitat types, ranging from mangrovesto fresh
marshes to hardwood forests, it was necessary that the unit model be generalized enough so
that the ecological processesfor al different habitats could be accommodated in agiven
landscape smulation. During the model feasibility assessment stage, we discussed preliminary
versions of the unit model with the participants in aworkshop process (Costanza et al., 1992a;
Costanzaet a., 1992b; Costanza et al., 1992c¢). Those developmental “beta’ versions served
as afocus of discussion of the types of ecological processes that the total ELM should be able
to simulate. The consensus from those discussions was that certain aspects of the original,
smplified unit model needed enhancement, resulting in amodel that was significantly more
complex than originaly envisioned. The version of the ELM unit model that we are
implementing is the Generic Ecosystem Model, or GEM v. 1.1, and a manuscript version of its
description has been submitted for review (DeBellevue et a., submitted).

The unit model itself isdivided into a set of model sectors that simulate the important
ecological (including physical) dynamics using a process oriented, mass baance approach.
This approach is particularly important in developing a generic ecosystem model, due to the
need to simulate the underlying mechanisms associated with water flows, nutrient cycling,
plant growth, etc. Using this approach, responses to inter-related control functions provide the
mechanisms to initiate/terminate materia flows among variables, avoiding any physical
unrealities of “creating” matter in order to increase the mass of a state variable. Moreover, if a
statistical, best-fit approach was the fundamental meansto produce simulation output of a
process such as macrophyte growth, the model would need to be modified for each of the vast
set of different environmental conditions that are encountered both temporally and spatially.
Such amodel would be impractical for the range of conditions that will be included in ELM
simulations. Importantly, the constraints and feedbacks associated with varying environmental
conditions would not be operative in a statistically-oriented model and unrealistic output would
invariably result. For example, macrophytes could “take up” nutrients associated with their
statistically-defined carbon growth in asimulation, but phosphorus may be unavailable or
[imiting in reality due to slow decomposition of available organic material. In that instance, the
nonsensical result would be that “non-existent” phosphorus would be taken up by plantsas a
result of unconstrained growth, thus ignoring mass conservation laws.

The unit model, however, maintains bookkeeping algorithms for the availability of
various types of matter, including system inputs, outputs, and internal cycling. In the instance
of plant growth in the presence of low nutrient concentration, that concentration of available
nutrients limits carbon uptake by the macrophyte. Thus the plant growth, and its associated
nutrient uptake, would be constrained by nutrient availability, and nutrient mass would be
conserved (as opposed to uptake of non-existent nutrient mass). In al aspects of the ELM, i.e.
in the unit model and in the spatial model, the conservation of mass of carbon, water, nutrients,
sediments and salts is maintained by the structure of the model with its cycling and feedbacks,
and indeed is fundamental to the process-driven foundation of the ecological modeling.3

Hydrology and hydrodynamics, nutrient, plant, consumer, fire, detritus, and sediment
dynamics are some of processes that are simulated within sectors of the unit model (Figure 3
and Figure 4). The hydrologic sector of the unit model is an important driving force,
smulating water flow vertically within the cell. While the unit model simulates ecol ogical
processes within aunit cell, horizontal fluxes across the landscape will occur within the domain
of the broader spatial model of the ELM. Such fluxeswill be driven by cell-cell head
differences of surface water and of ground water in saturated storage. Within this spatial

3 The calibration step is still extremely important, and involves a statistically derived fit of the model to
observed data. However, awell-calibrated ecological/physical model that incorporates responses to underlying
constraints and/or feedbacks will eliminate the need to recalibrate a response to the many variations in the
inputs.
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context, the water fluxes between cells carry dissolved and suspended materials, determining
water quality in the landscape.

We are using this version of the unit model to implement the first version of the
gpatially articulated ELM. We emphasize that thisis not the final version for the project.
Sensitivity analyses and other model evaluations (see the Sensitivity Analysis Section)
indicated that several of the biotic modules, including the hydrologic sector, should be
improved upon. We will be performing more extensive eval uations of the model’s code and
make correctiong/refinements in the future during the continued calibration process.

Unit model use

The unit model can be run using STELLA® |1 2.2.2 on a Macintosh computer. We
recommend that the model is run on a Macintosh with at least a 68030 microprocessor, such as
aMacintosh llci with at least 3 free megabytes RAM allocated to run the application. Different
scenarios may be simulated by varying the inputs, boundary conditions, or model parameters.
Table 1 isavery basic example of only asmall subset of the model parameters that can be
changed for varying scenarios. The large number of model interactions can not be adequately
portrayed in asimple table; however, we provide afew examples of some of the more obvious
results of manipulating parameters associated with macrophytes and hydrology. A thorough
understanding of the interactions and feedbacks within the model is necessary before extensive
scenario aterations are made, but a small number of minor adjustments to the model should be
possible without extensive study. (Most of the model equations are reasonably-well
documented at this point. More extensve documentation will be added during Task 3
documentation).
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Due to the large number of interactions and cascading effects of different actionswithin
the model, GEM is structured to include various threshold responses and maximum attainable
rates and stocks. In this fashion, a complex model can be maintained within the ranges of
observed, or reasonable, values. Thus, even though there are alarge number of interactions
and possibilities for the propagation of error through the simulation, when the model is
effectively calibrated it can be trusted to stay within appropriate bounds of output due to these
constraints. Maximum attainable standing stocks, minimum threshold responses, etc. are all
easily changed by the user, based on appropriate data.

The unit model was developed using STELLA® to allow the user to most easily discern
the linkages among the model sectors. Theinitialization of state variables and the modification
of rate constants and model parametersisfacilitated by placing aliases (=copies or “ghosts’) of
those parameters in central locations within each sector. Figure5isa“map” of the sector
locations for user navigation within the model diagram.

Unit model structure/equations

Conventions
The following descriptions of the different sectors of the model incorporate many of the
principal equations that describe the fluxes associated with state variables and the functions that
provide feedbacks to some of the biological and/or physical processes. In the text body we
present the logic of many of the algorithms used in the model to generate the flow of material or
information. In order to maintain aseamless link between the model and the text, we maintain

the full variable names in accordance with their usein the STELLA® model. A generalized
schematic diagram of the model is provided in Figure 4.

We assume that the areaincluded in the model boundariesis homogenousin most
respects. Textin ALL_CAPS indicates astate variable, and is given in this format when first
defined inthe text and in al tables and equations. Text that isitalicized represents auxiliary
variables and parameters when first defined within a sector and when used in equations and
lists. Otherwise, variables and parameters will be spelled out completely, unitalicized, when
used in other contexts within the text. Within the equations in the text, variables and
parametersgivenin bold, standard text represent Boolean statements and intrinsic functions.
Parameters preceded by rc_are rate constants; variables appended by _fb are feedback control
functions.

Global Inputs Sector

Daily solar radiation is simulated by an algorithm based on that by Nikolov and Zeller
(1992). This procedure uses standard calculations for determining daily solar radiation at the
top of the atmosphere based on julian date, |atitude, solar declination, and other factors.
Nikolov and Zeller (1992) developed aregression relationship of mean monthly cloud cover
that was based on precipitation, humidity, and temperature data. For the unit model, we
developed adata input file of simulated monthly cloudiness based on the Nikolov and Zeller
(1992) algorithm, requiring only the three (daily) data sets listed above. We used these
monthly atmospheric input datain an algorithm that determined the average daily irradiance at a
altitude of 274 m above MSL. Finaly, aBeer’slaw relationship was used to account for
attenuation through the atmosphere at different atitudes/solar elevations, thus determining the

daily radiation (SolRadGrd in cal*cm=2*d-1) received at the earth surface at any elevation,
latitude, or time of year in the northern hemisphere.

Hydrology Sector
Water is held in three state variables, with potential flux among the variables dependent
on avariety of smulated processes. 1) SURFACE_WAT iswater that is stored above the
sediment/soil surface; 2) UNSAT_WAT is stored in the pore spaces of the sediment/soil
complex, but not saturating that zone; 3) SAT_WAT iswater saturating the pore spaces of the
sediment/soil complex. Daily precipitation values are input data to the model. Surface water
runoff, evaporation, and infiltration, and saturated/unsaturated water transpiration are some of
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pot_pan_evap = (0.00482* C.*C,,* C,)* SolRadGrd / 585
C, =0.463+0.425(T / T,) +0.112(T / T,)?
C,, = 0.672+ 0.406(W/ W,) - 0.078(W / W)’
C,, =1.035+0.240(H / H,)- 0.275(H / H,)?

where 585 cal/g latent heat of vaporization is used in conversion of solar radiation from cal -

cnr?2 - d-1toit’ swater equivalent of cm/d. Cr, Cw, and Cy are coefficients related to
temperature (T in °C), wind speed (W in kmvhr), and humidity (H, proportion from 0-1),
respectively. Parameters subscripted with O (such as T,) are reference valuesin Christiansen’s
(1968) model. If adequate pan evaporation data are available, actual evaporation is determined
by the reduction of the pan evaporation flux by atemperature dependent pan evaporation
coefficient.

Saturated and Unsaturated water -- Loss of water by plant transpiration occurs either from the
unsaturated or saturated water storages depending on the presence/absence of rootsin saturated
zone. We have a gradation between physical and biological controls on this flux term, with the
choice dictated by the vegetation type, water availability, and model scale. There aretwo basic
mechanisms controlling evaporative losses through the plant canopy. First, the degree of
coupling between the canopy and atmosphere influences the degree to which purely physical
processes drive the transpirative loss. Secondly, the degree to which water islimiting, and
thus stressing plants, simulates the reduction in transpiration (and thus primary production at
some point) due to stomatal closure and changed canopy conductance. Because of the
importance of evaporation and transpiration to this wetland model, we analyze the effects of
this parameterization closely in the unit model Sensitivity Analyses section, where athorough
description of the evaporation and transpiration algorithms is provided.

Horizonta flow of water in saturated storage was determined using the smplifying
assumptions of steady, unidirectional flow in an unconfined aquifer. The basic Darcy equation
was then applied for groundwater flow for each of two directions (as explained above), with
the following example for flux to the east:

if tot_water head > SAT _wat_ East _head then
(tot_water _head- SAT wat_East_head)
JoT 578 (4
*sat_hydrol _conduct*\/cel _area* sat_water _hd
else 0

wheretot_water _head isthe total water head (m), the sum of the saturated water head plus the
surface water height (if the saturated water height reaches the sediment/soil surface);
SAT wat_East_head isthe hydraulic head (m) outside the cell to the east; sat_hydrol _conduct

is the saturated hydraulic conductivity (m - d1); and sat_water_hd is the hydraulic head of the
saturated water (m).

Vertical fluxes of water occur between all three of the water storage compartments. If
surface water is present, and there is available storage in the unsaturated storage, avolume
water infiltrates into the unsaturated zone at a rate determined by the (daily) infiltration rate (m -

d-1) for the habitat type. When the sediment/soil is fully saturated, surface water may flow into
the saturated layer to replace outflow from the saturated storage at arate determined by the loss
of saturated water. Thus, we assume that the rate of vertical movement of water from the
surface to the saturated zone is at least as fast asthat of losses from saturated storage via
horizontal flow plustranspiration. Similarly, water in saturated storage flowsinto surface

(3)

Sat_wt_E_out=
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water storage when the total capacity of the sediment/soil is exceeded, determined by the rate of
horizontal saturated water flow into the cell.

Percolation from the unsaturated storage to saturated storage is determined by the
hydraulic conductivity of the sediment/soil for unsaturated conditions. We make the
simplifying assumption that the water in unsaturated storage is distributed homogeneously
within that zone, again ignoring the presence of any wetted front and the heterogeneities
associated with processes occurring on faster time scales than the daily time step used in the
unit model. A maximum unsaturated hydraulic conductivity is determined for each habitat
(soil/sediment) type, and the actual conductivity is mediated by the soil moisture. This
determination is an empirically derived function, ranging sinusoidally from O to maximum
(Dominico and Schwartz, 1990) as shown in Figure 6.

Percolation flow (m3-d-1) is simply the saturated (vertical) hydraulic conductivity (m/d)
multiplied by the surface areain the system. With arising water table, water in the lower part
of the unsaturated zone becomes part of the saturated water storage, and thus the moisture
within the unsaturated zone is added to saturated storage (for accounting purposes). Then the

total volume allocated from the unsaturated to saturated zone (m3.d-1) is:
unsat_to_sat_ fl =if unsat_moist_prp <1.0then unsat_ perc+sat_add_fm rise
else UNSAT _WATER/ DT

where unsat_moist_prp is the dimensionless proportion of water to pore space in the
unsaturated zone, unsat_perc is the flux of water (m3-d-1) percolating from unsaturated storage

to saturated, and sat_add_fm riseis unsaturated water (m3-d-1) that is allocated to saturated
storage with arisein the saturated water table. At the point that surface water infiltrates into the
unsaturated storage such that it becomes completely saturated, all of the unsaturated water is
allocated to saturated storage in one time step, (a discontinuity that isarelatively small “flux”
under normal conditions).

Hydrodynamics Sector

In shallow surface water (<3 m?), the unit model will simulate the hydrodynamics
associated with the transfer of wind energy to water, calculating the stress effect of wave and
current induced turbulence near the bottom sediments. This energy drives the suspension and
deposition of sediments, which in turn affects water clarity within the system. In the spatial
modeling context, sediments can be transported while in suspension. For the purposes of the
unit model, we assume that 1) water density is constant; 2) surface tension is negligible; 3)
Coriolisforce is negligible; 4) only one set of wavesis considered at atime; 5) the sediment
surfaceis ahorizontal, fixed boundary that does not absorb energy; and 6) wave amplitudeis
small and the waveform invariant within the time and space scales considered. While the first
three assumptions are reasonable for most situations that the unit model is applied to,
assumptions 4-6 involve issues of the area considered in the model, and can be considered
reasonable in most situationsif sufficiently small cells are used in a spatial model.
Wave and current simulation -- The wave dynamicsin the unit model are estimated by wave
prediction equations for transitional depth water, where the depth:wavelength ratio is between
1:25 and 1:2 (USACOE, 1984). The unit model will not necessarily predict wave erosion
accurately when waves are limited by the duration of wind events. Wave development that is
duration-limited occursin water bodies exceeding several square kilometers, whereas fetch-
limited conditions are more typical for smaller areas. We use USACOE (1984) for determining
the wave height and period in the following series of equations. After determining the fetch
distance for a given wind direction within the cell, a series of algorithms calculate aloca wave
height using information on wind speed, fetch distance and water depth. Both of the latter
corrections convert distances into dimensionless parameters using the gravitational constant.
For instance, the dimensionless depth parameter used in determining local wave height is
determined by:

(5)
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S wt_depth* G
Wind_speed?

D_less depth =

where D_less depth isthe dimensionless fetch parameter, S wt_depth is the distance of open
water over which waves travel (m), G the gravitational acceleration (m-sec2), and Wind_speed

isinm-sec’l. The STELLA® software does not support an intrinsic hyperbolic tangent
function needed in the calculation of wave height. Therefore we developed agraphical
algorithm to approximate tanh(X), where X isany expression. Thisalgorithm isthen used in
calculating intermediate parameters involving depth and fetch parameters, solving the following
relationship:

depth_H_corr = tanh(0.530* D_Iess_deptho'”’)

where depth_ H_corr isthe intermediate result involving the hyperbolic tangent of the
dimensionless depth parameter, tanh the hyperbolic tangent function, and 0.530 an empirical
constant. A similar technique is used to determine a second intermediate result involving fetch,
fetch H_corr. Theseintermediate results are then used in solving the following equation for
local wave height:

0.283*Wind_speed®* depth_ H_corr* fetcch H_corr
G

where 0.283 isadimensionless empirical constant.

Thiswaveheight is then expressed as wave energy (USACOE, 1984 pgs 2-26)
Energy can be added to the cell when the unit model is applied in aspatial context and wave
energy is propagated from outside the cell. Energy is also dissipated due to bottom friction as
waves travel within the cell. From the combined energy of such inputs/outputs, the actual
wave height (Wave_height) within the system is calculated from this total energy.

The wave period is determined from agorithms similar to those used in wave height
calculations (USACOE, 1984), wherein intermediate results are found involving the hyperbolic
tangent function and empirical constants (see above). The wave period is determined by:

7.54* Wind_speed * depth_T__corr * fetch_T_corr

G
wheredepth T _corr and fetch T _corr are the intermediate results involving depth and fetch.
Likewise, thewave  Length is calculated following the USACOE (1984). We then determine

the wave orbital velocity for wavesin water of transitiona relative depth using Linear (Airy)
theory (USACOE, 1984).

Loc_Wave_height =

Wave period =

Wave _height* G* Wave _ periodt

Wave orbit velo=
- - 2* Wave__Length

2
*
EXP@ Pl*S wt deptho 6%2 PI* S  wt_deptho
e Wave Length ﬂ e Wave_Length (%)

where Wave_height is the actual wave height (m), and Sf_wt_depth is the depth of the surface
water (m).

Shear stress-- The unit model calculates shear stress in streams differently than in open water
such asalake. We calculate a shear stress that is afunction of the interaction of wind-induced
wave motion and currents (Grant and Madsen, 1979):

(6)

(7)

(8)

(9)

(10)
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Shear _stress = 0.5* fric_coef * Fluid_density
*[1.0+ current_corr? +2.0* current_corr
*COS((ABS(Current__direction - Wind _direction)*0.8))]
*ABS(Wave_orbit_velo)

wherefric_coef isthe friction coefficient that varies with the extent to which the turbulenceis

due to wave vs. current velocities, Fluid_densityis the density of water (kg-m-3), and
current_corr isthe ratio of current velocity to wave orbital velocity. The shear stressisused in
the Inorganic Sediments Sector and the Deposited Organic Matter Sector, whereit isused to
suspend sediments above threshold resistances.

I norganic Sediments Sector

The inorganic (mineral) sediments sector is the foundation for the terrestriad and
wetlands soil and open water sediment submodels. It includes two state variables that
represent an aggregate of all sizes of mineral particles. One state variable represents those
sediments that are part of the deposited sediment (DEP_INORG_SEDS). The other represents
suspended sediments (SUS_INORG_SEDYS).

Deposited inorganic sediments are suspended in the presence of surface water as a
function of the shear stress calculated in the hydrodynamic sector. Erosion occurs by first
suspending sediments, then exporting them in runoff water. As described in the
Hydrodynamics sector, a shear stress due to waves/currents is determined each time step. This
shear stress on the sediment is compared to the shear resistance, which isan empirical function
of the root density of macrophytes and the inverse of the proportion of organic material in the
sediments. Sediment suspension occurs in layers that depend on the extent of erosion during
the prior time step, wherein if the potential erosion at time t; is less than that which occurred
one time unit previoudly tj-1 then no erosion will occur because it is assumed that the sediments
underlying the eroded material are more consolidated (less fluffed), and thus will not erode as
readily. However, that layer is subject to erosion if the potential for erosion is greater than
during the prior time step:

eros= MAX[Pot_Eros- DELAY (Pot_Eros,1),0]* cell _area

where erosis the volume (m3) of (organic and inorganic) sediment that is actually eroded in
one time unit, Pot_Erosis the depth (m) of (organic and inorganic) sediment that may be
potentially eroded due to the difference between shear stress and shear resistance, and cdl_area

is the surface area (m2) of the cell. In this example, the DELAY function isan intrinsic

function in STELLA® that returns the value of Pot_eros from the prior (1) time unit. The
actual mass of inorganic sediments eroded are determined by multiplying the volume of eroded
sediments by the proportion of sediments that are inorganic and their bulk density.

Suspended inorganic sediments many enter/leave the cell as afunction of surface water
inflow/outflow as calculated in the hydrologic sector. Sediments are deposited from the
suspended stock under low shear stress conditions, i.e., when shear stressis less than fluid
mud yield. Another input isthe precipitation of calcite by periphyton photosynthesis, forming
a calcite mud substrate which forms a major soil type in some regions, e.g. where we are
applying the model in south Florida (Browder, in press). Thisisan example of aflux that may
easily be rendered inoperative (deleted or zeroed out) without other effects on the modd, if itis
deemed unimportant to the system of interest.

The sediment depth may change due to decomposition of organic materia and the
suspension/deposition of sediment/soil. We dynamicaly determine sediment elevation
depending on the masses of the sediment block, using afunction of the volumes of pore space
and the inorganic and organic sediments. The block volume of the organic and the inorganic
sediment masses (without pore space) is determined from the mass and the standard density of

(11)

(12)
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the organic and of the inorganic constituents. The total sediment volume is then the sum of the
block volume of inorganic sediment/soil plus the block volume of the organic component plus
the pore space volume. Sediment elevation is then determined from the volume and the total
cdl area. Over long time scales, sediments can also downwarp, moving part of the
sediment/soil block down below the base datum of reference, thus effectively being lost from
the system. We describe them as a function of simple constant rate:

DIS dn_warp =rc_downwarp* cdl _area* (1- Porosity)* DIS part_density

whererc_downwarpisthe rate of geologic downwarping (m/d), porosity is the proportion of
sediment/soil structure that is occupied by pore space, and DIS part_density isthe average

density of inorganic material in the sediments (kg-m-3). These dynamics of sediment elevation
are most important in Florida Bay coastal areasin relation to the height of the surface (sea)
water.

Chemical sectors: general dynamics

Chemical state variables include inorganic nitrogen, phosphorous, oxygen, and salt,
each within a separate sector. The chemica sectors have certain common structures and
dynamics which will be discussed here and not repeated for individual sectors. Nitrogen,
phosphorus, and salt are divided into those that are dissolved in surface water and those that
are dissolved in sediment pore water, the latter being the total of saturated and unsaturated
water storage stocks. Oxygen is explicitly considered only within the surface water.
Concentrations of each dissolved chemical are calculated from the mass of the chemical and the
water volume of its storage stock. Whereas a vertical oxygen profile is simulated within the
surface water, the other chemicals are assumed to be homogenous within its storage volume.
Thus, the concentration of chemicalsin the sediment water are assumed to be distributed evenly
throughout the water of both the saturated and the unsaturated zones of water.

All chemicals dissolved in surface water can movein and out of the cdl with the
horizontal flows that are calculated in the hydrologic sector. Chemicals may also enter from
precipitation, and some atmospheric exchanges can occur via diffusion and biologically-
mediated processes. All chemicals that are smulated in the sediment water can flow across the
sediment/water interface as afunction of simple diffusion across a concentration gradient, or
with the vertical water flows of upwelling or percolation/infiltration.

All chemicals dissolved in sediment water can enter and leave as constituents of
saturated water flow that is calculated in the hydrologic sector. Because of the assumed
homogeneity of concentration in both the saturated and unsaturated water components, a loss
of chemicas (such as nutrients) via saturated (groundwater) flow also decreases the
concentration in the unsaturated water zone. Similarly, mineraization or biotic uptake of
nutrients in the aerobic zone are vertically stratified processes. We assume that the vertical
fluxes of chemicals between the unsaturated and saturated zones is rapid enough to allow this
equilibrium to occur between the different dissolved componentsin the vertical profile. This
assumption appears reasonable where most of the dynamic processes that are being simulated
occur within the shallow, upper zone of the profile, which is the case for the wetland systems
in the Everglades. Chemicals dissolved in the sediment water can leave the system with
recharge to the aquifer below the base datum.

Salt (Conductivity) Sector

Salts are not actively taken up or released by the biotic components, but the salinity
(concentration of NaCl and potentialy other "tracer" chemicas of interest) affects certain
biological processes and the habitat type. In the current version of the unit model, the
structural dynamics are established for salinity, but salinity does not directly affect biotic
components. Thisis one example of where a module structure is established for future use.
The structure and dynamics of the Salt Sector follow the above general discussion, but an
accounting system is developed to allow salt to precipitate in crystalline form (SALT_CRY ST).

(13)
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This module allows salts to accumulate in the sediment with evaporation. Conductivity can
also be estimated when this value is needed to affect certain chemical reactions.

Dissolved Phosphorus Sector
Available inorganic phosphorus is considered to be soluble orthophosphate in all of its
forms, here simply designated as PO4. Phosphorusis one of two nutrients that can potentially

limit the growth of plantsin aunit model simulation. The general chemical dynamics follow
the outline above, but also includes losses due to plant uptake and gains due to mineralization
of organic material.

Whereas phosphorus dissolved in surface water (PO4_SF WT) may increase from
precipitation or general atmospheric deposition, it is not lost to the atmosphere. Uptake of
phosphorus in this module by algae is determined by a simple ratio of carbon to phosphorus
(C:P) and is thus phosphorus uptake is determined by the amount of carbon fixed by the algae.
Likewise, the rate of decomposition of organic materia determines the rate of mineralization of
this nutrient via the C:P ratio of the organic material suspended in the surface water column.
Currently, the C:P ratio does not vary with time, only with the habitat type.

Uptake and mineralization of phosphorusin the sediment water (PO4_SED_WT) are
determined in the same manner as described for the surface water phosphorus, with the
replacement of algae by macrophytes for uptake. Adsorption-desorption of phosphorus to
clays and other sediment particles in the sediment is another process determining the availability
of phosphorus.

Dissolved Nitrogen Sector

In addition to phosphorus, nitrogen is considered in the unit model to be a potentially
limiting nutrient. Dissolved inorganic nitrogen is stored in surface water (DIN_SF WT) and
sediment water (DIN_SED_WT), with dynamics that generally follow those of the equivalent
phosphorus modules. For the simulation we aggregate NO2-, NO3", and NH4™" into one mass
value of nitrogen to represent the inorganic forms of nitrogen that are most readily available for
plant uptake. There are a number of oxidation and reduction reactions that determine the
species of nitrogen present in a given type of environment, and thus the extent to which the
inorganic nitrogen is readily available for plant uptake. However, we make the simplifying
assumption that a certain proportion of the total inorganic nitrogen is in an available form
within different environmental conditions (anaerobic sediments, aerobic water column, shallow
aerobic sediments, etc.). Thus, the detailed kinetics of nitrification and other processes are not
simulated, with an assumed equilibrium (over the daily time steps) of NO3-N in the surface

water for algal uptake and NH4-N in the sediment water for macrophyte uptake.

The differences between simulated dynamics of phosphorus and nitrogen arein the
addition of denitrification losses from the sediment water storage and the lack of explicit
sorption/desorption to clay particles. Denitrification losses to N20O and N2 occur in the

anaerobic portion of the sediment profile, the depth of which is determined in the Deposited
Organic Matter Sector. Denitrification is determined by:

din_sed_wt_denitrific = sed_anaerob_ depth* cdl _size* DIN_SED_WT*rc_ DIN_ denit

* exp(Air_temP- Tc)

where sed_anaerob_depth is the depth (m) of the anaerobic layer in the sediments, cdl_areais
the surface area (m2) of the system (or cell), rc_DIN denit is the specific rate (1-d-1) of
denitrification, air_temp isthe air temperature, and T¢C isthe critical temperature, at which
denitrification is near its maximum rate. Whereas sorption/desorption is not explicitly
determined, a proportion of total inorganic nitrogen NH4-N is assumed available for uptake by
plants within the sediment water. Thus, concentration of available nitrogen in the sediment
water is decreased by afactor representing the proportion of NH4 that is not bound to sediment
particles, which is determined by the habitat type.

(14)
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Suspended Organic Matter Sector

The organic matter stock in this sector includes the mass of non-living organic matter
and of living microscopic decomposers that are suspended in surface water. The non-living
portion of this stock includes organic materia ranging in size from dissolved organic
compounds to particulate detritus such as leaves that are in the surface water volume. (Thus,
here we use the term suspended to include material which is dissolved, or "suspended in
solution”). Asindicated in the Inorganic Sediments Sector, we smulate the dynamics of
suspension and deposition of both organic and inorganic material in the unit model. Thus, for
the purposes of tracking such changes in the sediment/soil depth (mass) via suspension and
deposition, our units for the suspended (and deposited) organic material stocks are in mass of
total organic matter, as opposed to only organic carbon. We currently assume that the stock of
suspended organic matter is homogeneously distributed throughout the water column, and is
parameterized such that organic material of al size fractions have the same characteristicsin the
input-output dynamics discussed below.

The model structure is such that some inputs to this sector will occur during one time
step, even if no surface water is present. However, that same material is “deposited” to the
deposited organic material during the same time step.

Inputs -- Mortality of agae, macrophytes, and consumers, along with consumer
egestion/excretion, are inputs from the biotic components of the unit model. Being entirely
donor dependent, the flux rate of carbon is calculated in the appropriate living biotic sector.
Theratios of carbon to organic matter for these living carbon stocks determine the mass of total
organic material associated with each input. Depending on the habitat and thus the type of
living plants and organisms, specific proportions of the mortality are then allocated to either
suspended, deposited, or (in the case of macrophytes), standing dead detritus. Suspended

organic matter input to this stock from consumers (kg OM - d-1) is given simply by:
(cons_mort__biom+ cons_ egest)
Cons_C_to_OM

where Cons_prop_to_SOM is the dimensionless proportion of consumer losses that is directly
alocated to the suspended stock, cons mort_biom is consumer mortdity (kg C- d-1),
cons_egest is the egestion by consumers (kg C- d-1), and Cons C to OM is the ratio of

carbon to total organic matter of consumers (kg C - kg OM-1). The complement of
Cons_prop_to SOM isthe proportion that is allocated to the deposited organic matter stock
(described below). A similar relationship of allocations is used to determine the flux of total
organic matter to this organic matter stock for the flux of carbon due to mortality of
macrophytes and algae and due to degradation of standing dead detritus.

Inputs to this stock from suspension of organic matter from the sediments is described
in the sector concerning deposited organic material. Suspended material can flow into the
system with surface water flux determined in the Hydrology Sector, and is merely the mass of
organic material suspended in the water volume that isinput to the cell.

Outputs -- Outflows from this stock include decomposition, deposition, consumer ingestion,
and export with surface water. Decomposition isimplicitly driven by the microbial
community, with no internal feedback mechanism or recycling within the module. This
mineraization of organic material is assumed to be an aerobic process in the water column, and
thus there are smply two control functions constraining this flux of organic material.

SOM_ fr_consum = Cons_prop_to_SOM *

. ®&3OM_NC 6
SOM _decomp = rc_decomp* SUS_ORG_ MAT * decomp_temp_rel * ming———— 1+
eSOM_NC,,

whererc_decomp is the maximum specific rate of decomposition in aerobic conditions. The
decomp_temp_rel is atemperature control function that increasesin asigmoid fashion, ranging

(22)
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consumption and maintain the consumers within biomass densities that are reasonable
compared to observed values.

The availability control function determines the biomass of a particular resource that is
available for ingestion by the consumer. Its general form for availability of resource X follows
that of Wiegert (1979):

; e (Xs 'X) O u
X _avail = maxégl- T,Ou (27)
ee (XS'X r)z u

where Xg isthe saturation density of resource X at which ingestion by consumersis maximal,
X isthe current density of the food resource, and Xy isthe density of the resource at which

consumption does not occur. The max function constrains the result to be non-negative,
ranging from0to 1. Thisratio isthen multiplied by the standing stock of the resource,
resulting in the mass of (carbon) biomass of that resource that is available for consumption.

The third control function is the density dependent feedback, constraining ingestion to 0
when a maximum biomass density is attained. Thus, the following is the general form of the
equation for consumer ingestion, using ingestion of the nonphotosynthetic portion of
macrophytes as an example:

NPhBio_avalil

Cons_ingest_NPhBio =
OM _tot_carbon

* Cons_temp_ fb* CONS

(28)

. CONS ¢
*rc_cons_ingest * eei —= 0
€ cons max g

where OM_tot_carbon isthe total carbon biomass of all organic matter stocksin the model.

Losses to consumer stock include respiration, egestion, mortality, and emigration.
Respiration and mortality use the same form of temperature feedback asthat used in the algae
and photobiomass state variables. Egestion is a proportion of the material egested, or the
complement of an average (carbon) assimilation efficiency.

Fire Sector
Fire can burn living and non-living plant biomass in the unit model, whether the
material is emergent vegetation, peat or other organic material in the soil. The probability of a
lightning strike is a random function of time, using a pseudo random number generator in

STELLA®. However, the threshold probability of a strike occurrence varies seasonally or
otherwise, allowing for varying probability distributions of fire source. The distribution of
threshold values for alightning strike is:

lightn _strike_thresh = 0.02* COS(DayJul / 365* 2* PI) +0.98 (29)

which ranges from 1.0 in January and December (julian dates 1 and 365), to 0.96 in July. If
the random number generator returns a value larger than the threshold, a lightning strike is
generated. A fire could also be generated from other, nonrandom, sources as necessary.

Ignition from afire source and the rate of fire propagation within the system are
calculated using aformulation similar to Kessell’s (1977) fire model. A state variableis used
to store the attribute of a new lightning strike or a continued fire presence. If thisFIRE_ORIG
value is non-zero, then the fire spread rate across the horizontal area of the system (m/d) is
described by:

fire_spread_rate =
fuel _heat content* fuel _loading* fire_rx_veloc* Oxyd _moist _exp* fuel _ash_free (30)
fuel _bulk_dens* fire_heat_ for _ignit
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where fuel_heat_content is the potential heat content of the fuel type (kcal/g), fuel_loading is

the biomass of available fuel (g-m?), fire rx_velocis the consumption rate of the fire (1/d),
Oxyd_moist_exp is adimensionless function of the moisture of the fuel, fuel_ash freeisthe
dimensionless proportion of the fuel that is organic material, fuel_bulk densis the effective

bulk density of the fuel (kg-m-3), and fire_heat_for_ignit is the threshold heat required to ignite
the given fuel (kcal/g).

Vegetation height and root depth modify the bulk density, with the effective bulk
density being equal to the biomass of the fuel divided by the mean height and depth of the
vegetation; higher densities slow down the spreading rate of fire. The agorithm for
determining the moisture conditions accounts for current rainfall, soil moisture, and surface
ponding; moisture can either prevent fire ignition, modify the rate of fire spread, or extinguish
apresent fire.

Currently, fire is assumed to burn all organic biomass within its areal extent; a“slow”
fire will cover less areawithin the cell per time, similar to afire of low heat intensity. The
linear rate of fire spread isthen converted to a specific rate of biomass burning (1/d):

fuel _bulk dens

fire_mass_burn = fire_spread_rate* -
fuel _loading (31)

where the terms are defined above. This specific rate is then used to calculate the loss of
organic biomass in the appropriate sectors.

The spatial movement of fire is different from that of water flow. Fire starts at one
point and propagates horizontally within the system (or cell), as opposed to a mass balance flux
of water based on differencesin head height between sites. Because of this difference,
accumulation of fire acrossthe cell istracked in the state variables FIRE_TO_WEST and
FIRE_TO_EAST, which maintain an account of the linear extent of propagation in two
directions. (Aswith the water horizontal fluxesin the Hydrology Sector, we provide examples
of these flowsin only two of four directions). Depending on thefire sorigin (i.e., the
midpoint of the system with alightning hit or one cell edge due to across-cell propagation), the
fire has avariable distance to travel before reaching the cell boundary(ies). Wind direction and
speed modify the direction and areal extent of the fire spread; in the spatially articulated ELM
these parameters will be afactor in propagating fire between cells.

Unit model translation

In developing the final unit model in STELLA®, the user calibratesit to the different
habitats (after thorough debugging if changes were made), and verifies that the model output
meets acceptable levels of precision compared to historical data. The equations are then

exported from the STELLA® unit model, and software from MIIEE trand ates them into C code
that runs as a simulation in conjunction with hardware drivers. These steps are described fully
inthe Trandating STELLA Models, Spatial Modeling Package Section below.

SPATIAL MODEL

Boundary establishment

In Task 1, we established a consensus on the objectives of the current version of the
ELM and the general boundaries to beincluded (Costanzaet al., 1992c). In direct consultation
with the Digtrict and using their aerial photography and other data, we more recently fixed the
model boundariesin a precise manner. In doing so, we made some changes to the previous
boundaries for the northwest area. Instead of the boundary continuing in aline west from the
southern levee of the western portion of the EAA (with no physical basisfor that line), the
boundary follows L-28 south until reaching Alligator Alley (Figure 1). At this point, the
boundary cells follow that highway to the west. The rationale here was to use existing
structures that form a“natural” boundary and to reduce the hydrologic complexity of the
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omitted region (that can be seen in SFWMD maps of hydrography of the region). Upon
reaching Highway 29, the boundary turns south as previously determined. However, the
boundary then continuesin a straight line to the Gulf waters instead of including a“dogleg”
west that would have encompassed a small remaining portion of the ENP. Thiswas done
because it is very beneficia to avoid small pockets and acute anglesin the boundaries when
developing amodel of spatial fluxes, and thus we did not include the small portion of the ENP.
The aternative of moving the whole western boundary further west was unacceptable due to
that creating athin strip of open area between an arbitrary (non-physical) boundary and the
structure of Highway 29. The new boundaries do not change the intent of the consensus and
provide abetter physical/mathematical rationale for the areal extent of the model.

Spatial dynamics

Ecologica systems are inherently complex, encompassing the physical environment,
the biotic response to that environment, and the various interactions and feedbacks among the
components. Ecological models have historically been constrained to the assumption that the
modeled system was homogeneous throughout its bounds. However, such an assumption is
not valid when considering systems on relatively large scales; the Everglades landscapeisa
complex mosaic of alarge variety of land useshabitats. It is critica to quantify the influence of
landscape pattern on the ecological processesin the system, and conversely how changesin the
processes may shape the landscape itself.

We have established a spatial modeling system for analyzing such landscape-scale
issues for the Everglades. Asindicated in the feasibility assessment report (Costanzaet a.,
1992c), the concept of this development utilizes amodular framework and user friendly
software so that future devel opment is relatively unconstrained by the computer code itself.
Changesin spatial scales, management components, and simulated ecol ogical processes will be
possible without extensive changes to the model code.

The principal components to the spatial articulation of the ELM are: 1) the basic Spatia
Modeling Package which forms the core of the grid-based spatial model; 2) the canal routing
algorithms, the interaction of canalswith model cells, and control structure simulation; and 3)
the temporal habitat transitions within the landscape. Each of these topics are discussed below
in separate report sections, athough the Spatial Modeling Package ultimately
coordinates/generates all of the code associated with these sections to run the ELM in space and
time.

Spatial Modeling Package (SMP)

The Spatial Modeling Package (SMP) isthe central integrator of all of the components
of the ELM. Although the code performs an extremely large number of tasks in implementing
aspatial model, most are generic to the ELM and other grid based models devel oped for our
gpatia modeling system and are transparent to the user. With the aid of a user interface, the
SMP links the unit model, habitat-specific data, spatial data, and canal algorithmsto runin
space and time. The software has been developed for avariety of platforms and for avariety of
modeling objectives, including the ELM. Appendix A contains the preliminary documentation®
provided to run the Spatial Modeling Package for general spatia modeling and will be modified
for thefinal ELM product. The following provide an overview of the functions that the user
observes or undertakes.

STELLA Translator
This program runs on Macintosh computers, trandating the unit model that has been
debugged in STELLA into C code. Using several naming conventions for variables, the
equations from STELLA are read by the trandator and converted into code for running in a
paralel processing architecture. Variables of flux between cells (infout of the unit model

4 All code of the SMP, and the documentation of the Spatial Modeling Package Section, was written by Tom
Maxwell of MIIEE. (410) 326-7248; Internet maxwell @cbl.umd.edu
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bounds) are linked to predefined intercellular flows in the model configuration process. The
executable program has help files and should be self-explanatory.

Variable configuration

After trandation of the STELLA model, configuration steps are (optionally) needed.
One can reconfigure variables to be specific types (seria time series, flux function, habitat
dependent parameter, etc.) if needed, define the model time step, define the output variables
and their output frequency, and several other such model and parameter attributes. Editingis
done with the assistance of the interface (see Model Interface section) that provides explanatory
text concerning the choice of attributes. Most of the model variablesthat are presented do not
need ateration from their default configuration.

Driver code generation
At this step, the code is automatically generated based on the STELLA equations and

configuration files generated/modified above. All of the datafiles have been identified, the
variable types configured, the output configurations established. Using the development
environment of Macintosh Programmer’s Workshop (MPW, assuming the favored platform of
transputers in a Macintosh computer), the various modules of C code are compiled and linked
using software components® that generate an executable model in the MPW environment.
Analogous steps are taken to build the model driver in other hardware/software environments
(see Appendix A).

Water management

Overview

The South Florida Water Management Moddl (SFWMM) isamodeling tool for
simulating water routing in the region that has been well accepted by researchersin the south
Florida community, as shown by the consensus from our previous workshops (Costanza et
al., 1992c). For theinitial phase of the Everglades Landscape Model (ELM) devel opment, we
are using many of the agorithms developed for the SFWMM to convey water through the
canals and control structuresin the model area. We report here on the use of algorithms
trandated (partly) from the SFWMM FORTRAN code to C code that runs on standard serial
computer platforms® , along with their modification for ELM objectives and implementation in
aparallel processing computing environment.

The principal mechanism of water flow in the model ison acell to cell basisvia
overland flow routines using Manning’ s equation. Canals are another major water transport
mechanism in the ELM, moving water greater distances within atime step than the
comparatively sow sheet flow through vegetation. Compared to the extensive canal network
simulated in the SFWMM, however, the ELM (during this phase) incorporates significantly
fewer canals (see Figure 8), and instead focuses on water and vegetation processes within the
more natural areas of the landscape.

For thisversion of ELM, we are using most of the algorithms for water conveyance
along canal reaches that are used in the SFWMM. The principle changes are associated with
implementation in aparallel processing environment and the details of the interaction between
the canals. Thus, we will not reiterate the rationale of the hydrologic algorithms, but will focus
on: 1) communication between processors for instances when more than one processor in the
array of processors shares a common canal; 2) the mechanisms associated with canals
interaction with adjacent cells; and 3) the ecological processes that are smulated within a canal
water column. Whereas the final report for Task 2 will include results of working simulation
runs and the actual code asit isimplemented, here we formalize the algorithms for devel oping
the canal routing code.

The canalsin the ELM are divided into a set of cand “reaches’ that are linked at
upstream and downstream control structures through which water flow is controlled. A canal

5 Libraries of Logical System Tools from Pacific Parallel Research, Inc.
6 R. Van Zee of the SFWMD ESRD translated the FORTRAN code to C code.



28 ELM Task2

may cross any number of cellsaong its reach, and the canals and cells may exchange water
and dissolved or suspended constituents. Within each canal reach, the canal is assumed to
have constant depth and width. Cellsthat have any intersection with acanal will have a specia

“canal-containing” designation, with areduced area (<1 km?) determined by subtracting the

surface area of the canal withinit. (Although the area of acana crossing a1 km? cell isvery
small compared the cell area, accounting for mass balance of water dictates the necessity of
calculating the areasinvolved. The canals may be carrying alarge proportion of available water

within a1 km?2 cell). Figure 9 shows the general schematic of the canal routing, wherein a
cana crosses severa cellswithin itsreach. Each cana-containing cell has a defined area of
interaction with the canal, across which water and material may flow.

Thedirection of the cana flow within the landscape is determined not by the cell to cell
connections in araster format, but by the vector imposed by the upstream and downstream
control structures. Thisline and its associated width determines the cells that have interaction
with canals (see below). There are severa instances where canals do not form straight lines
between control structures. In these special cases we will define the canal by the cells through
which it passes as determined from data sets described below. The determination of the canal
direction and cell areainteraction is accomplished viathe development of afunction to compute
the areal intersection of the canals with the cells. We are planning on coordinating this
development with the Digtrict. Thisfunction will be useful if the ELM isto be implemented
later using different cell sizes, asthe information is calculated from coordinates and will thus
aleviate the need from another complex input data set of cell-by-cell attributes. Moreover,
incorporation of new canals will be made somewhat more easily than a cell-by-cell description
of the presence of acanal.

Asindicated below, the ELM does not calculate cell to cell flow through canals, but
rather iteratively distributes the water stage height along a cana reach, with the control
structures responding to the stage as determined by management rules. These control
structures are the determinants of flow within the canal network, with management rules that
dictate flow through the structures as a function of water stagein particular basins. Whereas
the SFWMM reliesto alarge extent on historical stage discharge relationships to determine
flow, we are making an effort to incorporate theoretical weir/culvert flow equations so that
realistic scenarios, based on managed response to stage height, can be smulated.

There are several combinations of canals with levees within the ELM boundaries. One
configuration is of canals that have alevee on both sides of the canal (Figure 10), such asthe
North New River Canal section on the southwest side of Water Conservation Area (WCA) 2A.
There are canals with alevee on one side only, such as the canals on the east side of WCA 2A.
The modeled interactions of cells and the canal reaches varies depending on the
presence/absence of leveesin the zone of interaction.

Additionally, borrow trenches exist along the inside perimeter of WCAS, adjacent to the
levees. These have no control structures or definite boundaries and are not canals as defined
and modeled inthe ELM. Because they are relatively open channels compared to the shallower
adjacent portion of the WCAS, they alow water to flow faster than strictly overland flow
through vegetation in the middle of the WCAs. This can beinferred from the distribution of
cattailsin WCA 2A, which generaly follows the contours of these borrow trenches’ .
Nutrients introduced with water from structures appear to be conveyed along the borrow
trenches of the perimeter more rapidly than into the interior of the WCA, with cattails
predominating in the waters that have elevated nutrient levels along the perimeter8 . The scale
of the SFWMM islarge enough that it does not explicitly incorporate the influence of these
borrow trenches. However, the ELM is designed to simulate the response of plant
communities to factors such as hydroperiod and nutrient regime. Thus, we will incorporate the
potential for faster flow aong the borrow trenches by using aweighting factor to increase the

"SFWMD SWIM Plan for the Everglades, Supporting Information Document, March 1992 p. 134.
8Ibid p. 133
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depth of the trench-containing cells by an appropriate amount. Note that data estimating the
depths associated with these trenches and rates of flow will be required to accomplish this
accurately.

Canal definition data

The following variables for each cana reach will be stored in external filesfor usein
ELM. The following data are required for each canal reach within the ELM boundaries,
including the border cells.

* Cand reach ID

» State plane coordinates of upstream and downstream control structures

» Changein canal water surface elevation between upstream and downstream control
structures (m)

» Width and depth of cana (m)

* Crest elevation and crest length of weir at downstream cell (m)

* Levee height (m of height relative to base datum; O if no levee)

« Leveelocation relative to canal (integer attribute: 1 if levee is bearing between 1-90°
from the edge of canal; 2 if levee is bearing between 91-180° from the edge of candl;
3if leveeisbearing between 181-270° from the edge of candl; 4 if leveeis bearing
between 271-365° from the edge of candl; 5 if levees are on both sides of the canal)

* Virtual weir flag (0 if downstream end is an actual control structure, 1if it isavirtual
weir).

We assume that aleveeis of negligible width; with much smaller cell sizes, the levee
areawould become significant and alevee presence in acell with afixed volume of water
would raise the water stagein the cell. Inthat case, alevee width attribute would be associated
with agiven cana reach.

The mixing of raster based cell attributes with vectorized canal/levee attributes requires
the following agorithm to determine which cells will interact with the canals via overland flow
and which cellswill interact with the canals via seepage under levees. For acell at location
[X,y] that contains a cana and has a known habitat type and levee location attribute, the
following example (Figure 11) shows the routine for determining the cells that interact directly
with the canal viaoverland flow. A similar procedure, (but in an opposite direction from the
levee), is used to determine the cells that interact with the canals via seepage under levees. The
basin designation indicates which hydrologic basin in which each cell belongs and is delimited
by elevation differences, principally levees.

Asindicated above, this alocation procedure may involve either cells that physically
contain a portion of acanal reach within its boundaries or cells that are immediately adjacent to
such cells. Figure 12 provides examples of “interactive” cellsthat are separate from canalsin
the horizontal (or vertical, but not shown) direction and some interacting cellsthat are
diagonally opposite a canal-containing cell. The need for cells on the diagonal to receive water
isaresult of the nature of the canal reach interacting with more than two cellsin agiven
direction at atime. Details of an example are shown in Figure 13. Cell E in Figure 13 would
interact with cellsF and | vianormal overland flow in the southeast direction if acana/levee
was not present inthe cell. Cell E hasthe mgority of its area on the levee side of the cana and
istherefore defined as being in the basin with impounded water. Thus, that cell does not
interact directly with cellsF and | via overland flow of water. However, the canal section
shown to be physically within the cell itself does have overland flow connection to the
southeast. Moreover, the cana reach is considered in the ELM to be one long cell and will
interact viaoverland flow with alarge number of cellsin the southeast direction. The section
of canal that is shown within cell E will be hydraulically connected to cell Jfor overland flow.
The aternative of dividing the flow from the canal section within cell E among cellsF and | has
similar algorithm complexity (if not more complex due to division?) to the current choice.
However, that aternative appears likely to produce an artifact in distributing the flows among
cellsbecause it would artificialy distribute the volume associated with more than one canal
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section to each cell, i.e., several sections of canal, as opposed to just one, would be interacting
with one cell.

Iterative stage solution
The unit model operates dynamically in the cellsand in the canal. Hydrologic

processes such as evapotranspiration, seepage, overland flow and rainfall al occur within the
unit model of the canal and the model cell. Normal spatia fluxes of overland and groundwater
flow among cells occur from one cell into at most four neighbor cells. However, a canal reach
has alarger number of interactions via overland flow and groundwater seepage from al of the
cellsalong thereach. A quantity of water (determined from management rules) is introduced
into areach viaaweir/culvert flow equation from an upstream canal reach. Gains and losses
due to canal-cell interaction are cal culated along the reach, and an iterated solution is sought
among the various inputs and outputs of the canal for water stage height on adaily basis. This
iterative relaxation process for estimating the daily stagesin the canalsisdescribed in a
SFWMD memorandum?®. Within atime step to determine the canal stage along the entire reach,
the model undergoes a series of iterations until the difference in stage height (error) estimates
converges to a sufficiently small value.

Parallel processing

Parallel architecture divides the model cells among the available processors (24 in our
hardware setup), with each processor taking care of the calculations of the unit model and
gpatia fluxesfor the cellsinits domain (see Figure 8). Inter-processor communication occurs
in the instances where surface and groundwater spatial fluxes occur between cells handled by
separate processors. Because of the computational complexity of the unit model, most of the
processor tasks in the layout of the ELM are not dealing with processor communication but are
involved with parallel smulations of the unit model within the thousands of cells within the
landscape. For canal routing, we introduce another instance of interprocessor communication,
and that is when iterating a solution to the canal stage along a reach and the reach crosses a
processor domain boundary. In connecting processorsin aparallel environment, hardwired
links are often used in establishing a physical connection. However, virtual (code-driven)
connections are also incorporated in instances where the physical links are impractical. Inan
anal ogous fashion, we introduce the concept of avirtua weir for the linkage of a canal reach
across a processor boundary. Whereas the flow from one reach to another is controlled by
weir flow equations at the structure separating the two reaches, avirtual weir may be embedded
within acanal reach if it crosses processor boundaries. In the processor topology indicated in
Figure 8, no canal reach is split into more than two sections. Thus two sections are created
within aphysical canal reach, with the virtual weir providing a communication link between
processors that share acanal. Unlike an actual weir, however, the virtual weir has zero
impedance to water crossing it and isthus a heuristic device that effectively “removes’ the
discontinuity of the canal at such processor boundaries. The “flow” acrossthe virtual weir is
passed from one processor to the other, providing the information for the determining the stage
height along the entire canal reach. This continues as the iterative relaxation proceeds, with
both sub-reaches being involved in theiterative process. Intermsof coding, it isthe smpler
and easier of the two options that we are considering for implementing canal flowsin the
transputer-based parallel processing environment.

Canal - cell interaction
The unit model simulates a variety of hydrologic processes, including the following that
are pertinent to canal-cell interactions. 1) Overland flow is calculated using Manning's
equation, with a roughness coefficient that depends on dynamic simulation of plant biomass,
numeric density, and plant morphology. 2) The unit model calculates seepage of water (termed

9 SFWMD memorandum from Ray Santee, Water resources Engineer, WRD, RPD to Kent Loftin, Supervising
Professional Engineer, WRD, RPD. Subject was Changes and Improvements Made in the South Florida Water
Management Model. Date: January 22, 1987.
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percolation for the general case) from that stored above the sediment/soil surface into that
stored in sediment pore space (either in unsaturated or saturated storage). 3) Transpiration
associated with plant growth and maintenanceis simulated. It is based on relative humidity and
uses plant efficiency estimates of mass of water used to mass of carbon fixed, which in turn
depends on plant physiology. Evaporation is simulated using pan evaporation estimates and
pan coefficients. The unit model thus explicitly incorporates the hydrologic processes that
occur in both the canal and grid cells. Water (and associated nutrients and sediments) is
transported between cells and canals by the standard inter-cellular spatial fluxes of water as
described in the assessment report.

Canal-cell interactions are thus driven by the same mechanisms as the rest of the cell-
cell interactions. The unit model is configured to operate at variable scales, with cell szeasa
variableinput. Thus, the changesin the unit model that are associated with canal reaches are
minimal. The principa change isthe use of an area of exchange across cell-canal boundaries
determined by the cell of interaction, a value which the unit model within the canal obtains from
the Spatial Model Package links, as opposed to having it stored in the unit model code itself. It
should be noted that the variable cell sizing induced by overlaying canals within the grid cell
landscape is not equivalent to changing the grid cell size; the grid network is fixed, whereas

canals merely reduce the habitat areawithin a1 km? cell.
Habitat determination

Transition algorithm

An important aspect of the ELM structure is the dynamic nature of the habitats within
the cells of the landscape. Asenvironmental conditions change with time, the habitat type of
the cells may change in response. There are anumber of landscape models that simulate the
ecological or physical processes within a heterogeneous landscape, but they do not incorporate
mechanisms for the landscape to change in response to modeled processes. We have
developed the conceptual structure, and associated logical pathways, for implementing a
HADbitat Transition (HAT) algorithm within the ELM smulation. Due to the somewhat
uncertain nature of the research data available on plant competition in response to the three
environmental variables, we will incorporate modifications during the spatial model calibration
phase of Task 3.

For initial smplicity, our algorithm currently assumes that a model cell is homogenous
with respect to vegetation cover, and thus its habitat type. Each habitat has an identified
optimum range of historical attributes associated with 1) fire, 2) hydrology, and 3) nutrients.
The transition from one habitat to another depends on both the current habitat type and the
historical environmental attributes listed above. Because of the assumption of homogeneity of
vegetation within acell (for this preliminary version), the habitat type of acell changesina
binary fashion from one type to another. However, before this transition occurs, conditions
for growth have become less favorable for the current habitat, and growth rates would usually
be reduced due to nutrient and water limitations. The transition between different habitatsis
not accompanied by alarge switch in biomass, merely in species composition.

The planned agorithm to alow more gradual transitions from one mixture of plant
species to another assemblage in a heterogeneous cell will incorporate a 4-dimensional
response surface (Figure 14), where habitat type is the dependent variable, with fire, nutrients
and hydrology being the independent variables. For each cell, we maintain track of a historical
fire attribute based on itsintensity and the elapsed time since that classification. Similarly, we
maintain track of a proxy for eutrophication depending on afour classification of nutrient
concentrations and the elapsed time of the classification level. For hydrology, we monitor
hydrologic attributes that classify inundation level and the elapsed time of that classification.
These attributes will place a cell within the response surface at a unique point indicating the
probable habitat depending on the attributes. Potential succession from one habitat type to
another then depends on the current habitat state of the cell. A lookup table providesthe
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possible transitions among habitats, which are implemented if the new conditions warrant a
succession from the current habitat type.

Hardware

Asindicated in the Spatial Modeling Package Section, we have driversto support a
variety of computer platforms, with 24 transputers installed into a Macintosh computer being
the primary choice for most runs. The advantage of a parallel processing architecture such as
transputers liesin the distribution of computation among many processors. For grid-based
gpatial models such as the ELM, the advantages are enormous compared to running the
simulation on asingle processor. Because the same unit model needs to be solved in each of
thousands of grid cellsin asingle time step, significant increases in computational speed can be
achieved by distributing the grid over multiple processors versus asingle serial processor for
the whole grid (Figure 15).

For sensitivity analyses and some of the repetitive debugging runs, we anticipate using
the massively paralel CM-5 supercomputer. Accessing the CM-5 at the National Center for
Superconducting Applications viathe Internet, we will be able to more rapidly debug and
analyze the spatial components of the ELM with this computer.

DATA ORGANIZATION

Unit model process data

Linked habitat databases

A vital component of any model is the data used in its parameterization. There are 130
required inputs for the unit model, including variables, rates and initial conditions. With a
model of thisareal extent and process complexity, the efficient compilation and organization of
thedataiscritica. We have designed a set of linked databases'© for the process-oriented data
that change among the ELM habitats (habitat-specific data) in order to automate the transfer of
the parameters to the Spatial Modeling Package. The databases are organized to match the
sectors of the unit model, with a separate database for each sector such as Macrophytes,
Hydrology, Dissolved Inorganic Nitrogen, etc. (Figure 16). Within each database are separate
records for each ELM habitat; arecord contains the fields containing the data for each model
parameter. Each database has the rate parameters, initial conditions, threshold parameters, and
other data that are used in the unit model and that vary from one habitat type to another. These
parameters may be static (invariant with time) data, time series data, or data dependent upon
another parameter (enter X and Y pairs).

Within each sector’ s database, we provide the user with three different perspectives on
viewing information about the data. In theinitia view, one sees only the parameter name asiit
isusedinthe STELLA unit model and the field containing the numeric data. The parameters
are all seen on one screen, with different “pages’ or screens (=records) for each habitat type.
In the second viewing mode, another field provides parameter documentation with a definition
and the required units. In the third viewing mode, the documentation and unitsfields are
replaced with afield for the user to provide (unlimited) comments, including the
literature/researcher source and any other pertinent information. Moreover, this view provides
aseparate field for anumeric (1-5) grade attribute, whereby the subjective quality of the data
can be evaluated. For example, the nitrogen:carbon ratio of sawgrass that was measured in the
Everglades during four seasons may be considered high quality information ranked 1;
conversaly, plant growth data obtained from the literature for a plant in adifferent
geographic/climatic region would be ranked intermediate to poor in grade depending on the
evaluation of the assumptionsinvolved in the conversion related to the species, temperature or

10 We used FileMaker Pro for the Macintosh, a pseudo-relational database program. Thisis an easy to use
program that merely does not have the dynamic (automatic) linkages among linked databases. Whereas the
linkages are established only once when the system is designed, the user needs to invoke a simple update
command to obtain new datain the central database from a daughter database.
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other factors specific to the data. This grade allows arapid evaluation of the overall quality of
datafor different habitats and/or model sectors.

These separate databases are linked into the Central Database. This database file again
contains separate records for each habitat, and hasfields for al of the parametersin al of the
model sectorsthat arranged in adefined (array-based) order. The only purpose of this database
(which can be viewed if desired) isto provide a central linkage of all of the habitat-specific
parameters and which are exported as an ASCII (text) file. The export fileisread directly into
the SMP for running the spatial ELM model. When new data are found for any habitat-specific
parameter, the user opens the pertinent sector’ s database, enters the data in the appropriate
habitat’ s record, and documents the new information. The Central Database is then opened and
updated by retyping the habitat (record) name that needs updating with new data.

This system provides users with full accessto the critical data of the ELM in aformat
that allows one to easily focus on and evaluate particular areas of interest. Importantly, anyone
can view the numeric data, its source, and its perceived quality, and subsequently further
evaluate that aspect of the ELM. Although we designed this custom format specifically for
increasing the ease of parameterizing the ELM and therefore recommend its use, standard tab-
delimited (or DBF) import/export capabilities are available for exchanging data with other
database programs such as Oracle.

Spatial data maps

Habitat type maps

One of the principal data setsthat we are using for developing the ELM isthat of habitat
classification analyses for the years 1900, 1953, and 1973 that was developed at the Center for
Wetland Resources at the University of Floridain the 1970's. The (original) habitat type data
were compiled by Costanza (1975) into a the form of handrawn, color map hardcopies. The
1900 map of the “ primitive” state was prepared “primarily from 1953 Agricultural Stabilization
and Conservation Service photoindex mosaics and ASCS general and detailed soils maps’.
While in most cases the natural areas in the 1953 photographs were assumed to be essentialy
unchanged from their primitive state, land use in areas that were developed in 1953 were
extrapolated from soilsinformation. “V egetation maps prepared by other investigators were
also used, especially the ‘Vegetation Map of Southern Florida® by John H. Davis (1943)”,
along with miscellaneous other lesser sources (Costanza, 1975). The ASCS photo index
mosaics (1:250,000 scale) for the years 1948 to 1955 (mean 1953) were used in compiling the
1953 land use map. For the 1973 map, Costanza (1975) used a 1973 False Color Infrared
Mosaic by the National Aeronautics and Space Administration. Subsystems were cut out of
mylar prints of the maps using a heated nicrome wire, with the pieces then weighed to
determine their relative coverage.

The following descriptions!! are the key to the habitat classification system used in
these maps. We are currently determining the best means by which to reconcile this
classification set with the very similar set called for in the ELM from prior workshops
(Costanza et al., 1992c). For example, melaleuca and some other exotics are not defined in the
present maps, but have become recognized as important in the Everglades community
composition since the early 1970’ s when the maps' data were compiled.

Grassy Scrub Systems
Treeless systems composed of grasses and shrubs which occur on seldom flooded dry areas
with frequent fires. Dominant species are Seronoa repens (saw palmetto) and Arigtida stricta
(wiregrass). Soil and drainage characteristics are similar to pine Flatwoods but increased
frequency of fire prevents the growth of pines. Activities of aman in harvesting pine trees,
lowering water tables, and increasing frequency of fires have maintained many former pineland
areasin this classification. Also known as dry prairie and unimproved pasture.

11|_and Use Subsystem Classifications: from pp. 12-16 in Costanza (1975).
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Pineland systems
Three types of pine dominated woodlands: 1) Pine flatwoods - occurring on old marine terraces
(sea bottoms) characterized by low nutrient soils, poor drainage and occasional fires (4-10 yr.
frequency). Dominant overstory species are Pinus eliotti (slash pine), Pinus palustrus
(longleaf pine) or Pinus serotina (pond pine) with Seronia repens (saw palmetto) asthe
dominant understory species. Some areas have became commercia pine plantations and many
areas are used as rangeland. 2) Sandhill - these occur on old dunes characterized by excessively
well drained sandy soils with very low nutrients and frequent fires (1-3 yr. frequency).
Dominant overstory species are Pinus palustrus (longleaf pine) and Quercus laevi (turkey oak)
with Arigtida stricta (wire grass) as the dominant ground cover. Many former sandhill areas
south of the frost line have been converted to citrus production. 3) Sand pine scrub: these
occur on old dunes characterized by excessively well-drained, sterile, sandy soil (dightly less
water and nutrients than sandhills with infrequent fires ( 20-50 yr. frequency). These forests
are generally even-aged and have even-height since the infrequent fires usually destroy the
entire forest with system adaptation for subsequent reproduction (serotinous cones). Dominant
overstory species isPinus clausa (sand pine) with Seronoa repens (saw palmetto) asthe
dominant understory.

Hardwood systems
This classification is an aggregation of three forest types, al of which are characterized by a
diverse mixture of broadleaf species, moderate soil nutrient levels and high leaf areaindex.
Differences in hydroperiod produce: 1) xeric hammocks on drier, never flooded sites with
Quercusvirginianna (live oak) dominating; 2) mesic and hydric hammocks on moist but
seldom flooded sites with Quercus nigra (water oak), Percea borbonia (red bay), Magnolia
virginiana (sweet bay), Magnolia grandiflora (magnolia) Liquidamber styraciflora (sweet gum),
Acer rubrum (red maple) and Quercuslaurifolia (laurel oak) variably dominant; 3) mixed
hardwood swamp forest in seasonally flooded areas with many of the same tree speciesasin
the hammocks but with more variable dominance (stands dominated by bay trees with standing
water for extended periods are called bay heads). The hardwood classification actually covers
the spectrum from upland to wetland systems but is aggregated here because of similar
productivity levels and the difficulty of making the distribution at thislevel of detail. Relatively
rare larger stands of the exotic species Melaleuca leucadeudra (melaleuca) and Casuarina
equisettifolia (Australian pine) are also included in this classification.

Lakes and ponds
Freshwater ecosystems characterized by open water with slow exchange and seasonal
stratification. In lakes the limnetic and profundal zones are large compared to the littoral zone
and are main production areas while the opposite is generally true for ponds. Lakesinthe
region vary from oligiotrophic to eutrophic, but the large percentage (by area[but outside of
ELM]) arethe latter.

Cypress Domes and Srands
Ecosystems adapted to prolonged seasonal inundation in shallow depression or aong sloughs,
rivers and large lakes. Those occurring in shallow depressions receive water and nutrients from
surrounding areas with sluggish water circulation. The canopy assumes the characteristic
dome-like shape with smaller trees on the periphery and larger trees toward the center.
Dominant species is Taxodium distichum var nutans (pond cypress). Areas receiving flowing
water and higher nutrient levels along rivers and sloughs are dominated by Taxodium
distichum (baldcypress) and are known as cypress strands.

Wet prairie
Grassy systems adapted to seasonal inundation and dry periods with fire. Water levels are
generaly only afew inchesin the wet season and fires occur annually to triannually. Dominant
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species are Eleocharis cellulosa (Spikerush), Rhynochospora tracyi (bulrushes) and various
other sedges and grasses.

Scrub cypress
System composed of widely spaced dwarf cypress trees with awet prairie understory. Water
levelsin the wet season are dightly higher than wet prairie and the dry down is not quite as
severe. Thisleadsto frequent but light fires. Dwarfed Taxodium distichum var nutans
(pondcypress) is the dominant woody species with many species of grasses, sedges and rushes
in the understory.

Fresh water marshes and sloughs
Grassy systems which are seasonally to continually inundated. Water levels are higher than wet
prairies (1 to 1.5 ft) and fireis less frequent. Characteristic vegetation includes Pontederia
lanceolata (pickerel weed), Thalia geniculata (fire flag), Typha spp. (cattail) and many other
species of sedges, rushes, grasses and reeds.

Sawgrass marshes
System dominated by dense growth of Mariscus jamaicensis (sawgrass) to the exclusion of
almost al other species. This system is adapted to occasional fires when the surface of the soil
ismoist so that only the accumulated dead grassis burned off and thus requires almost
continual inundation. When fires burns off the upper peat layer, the sawgrass rhizomes are
destroyed and the speciesis slow to reestablish. Sawgrass deposit peat rapidly if deep burning
firesdo not occur, and most of the present agricultural production in the evergladesis built on
this peat.

Beach and dune
Sand dunes and beaches and associated vegetation are formed by the interaction of a suitable
sand source and wave and wind action. VVegetation consist of sparse salt-tolerant grassy and
herbaceous species such as Uniola spp (sea oats), |pomoea pes caprae (railroad vine) and
Coccologa urifera (sea grape). Beaches with adjoining urban development are classified as
urban [outside of ELM].

Scrub mangrove
Areas of stunted or dwarfed mangroves occurring in the transition zone between the well-
flushed coastal mangroves and fresh water systems. The small size of the trees is thought to be
due to the somewhat hypersaline conditions, low nutrients flows and poor soils. Dominant
species is dwarfed Rhizophora mangle (red mangrove).

Salt marsh
Occursin the broad intertidal flats where there are low waves and good tidal flushing. They are
capable of surviving frost stress unlike mangroves; some areas of periodic frost alternate
between salt marsh and mangrove. They are floristically smple, containing generally two
species of grass: Sartina alterniflora and Juncus roemerianus..

Mangrove
Marine based forest adapted to grow in salt water and anaerobic muds. Freshwater inputs from
land and their associated nutrients seem to be important to their survival, however. they are not
frost tolerant and therefore grow only below the frost line. Dominant species are Rhizophora
mangle (red mangrove), Avicennia nitida (black mangrove), Laguncularia recemosa (white
mangroves) and Conocar pus erectus (button-wood)

This data set has undergone a number of transformations from the original, hand-drawn
maps to digital informationin aGIS. These maps were digitized (Costanza, 1979) into a
format used by mainframe lineprinters. Because of limitationsimposed by the printer, the data
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cells had rectangular dimensions with 40 linesin the vertical dimension and 32 spaces (a 1.250
ratio) in the horizontal dimension. The actual dimensions of each cell was 0.6437km by

0.8046 km, for acell area of 0.5180 km? (origina measure = 128 acres).

Thisdigital data set was then transferred into the MAP |1 GIS on the Macintosh, which
uses rasterized information of square (not rectangular) cellst2. The vertically compressed map
image was then expanded using the “warp” operationin MAP Il. Warp produces an output
map that is based on the informational content of the original, but which isrectified to a
different set of coordinates. Two maps were used in this operation to rectify each habitat map:
acopy of the targeted habitat map (Copy_Habitat_map) and a null map (Null_map) that had the
coordinate dimensions desired for the rectified habitat map. The Null_map was created by
creating amap of (null) cellswith 1.25 times the number of rows in the Copy_Habitat_map
and the same number of columns. Tie points were identified in the four corner cellsin both the
Null_map and the Copy_Habitat_ map. We then used the warp operation, employing nearest
neighbor interpolation, to produce arectified Habitat_map. The resultant map had the same
informational content as the Copy_Habitat_map, but with arealistic aspect ratio of the map.
The resulting cells have true resolution of 0.6437 km per side of the square cell.

This fine-scaled data set then needed rescaling to match the 1 km? data set of the ELM
grid. For this operation, the operation of “respace” in MAP |1 created an output map based on
the informational content of the input map, but with alower cell resolution (larger cells). A
(different from above) null map with 1.0 km resolution was created as the map containing the
targeted resolution. The respace operation created a map whose cell values were computed as
the most frequently occurring value of the corresponding cells of the input map, weighted by
area. (Tiesin frequency were broken by taking the largest of the values).

Because the original habitat datafiles did not contain georeference points, we needed to
reconcile those habitat maps with some existing map for which there were geographic reference
points. This was necessary to both provide a standard reference for creating compatible
overlays and to ensure that the various transformations on the original dataresulted in a habitat
map that had appropriate physical dimensions (with no distortions). The SFWMD?3 provided
us with the exact model boundary cellsthat were identified by state plane coordinates. This
data, which was reformatted and read into MAP 1, provided amap of model cells that defined
the ELM boundaries (see below). To determine the exact location of a particular land feature
within amode cell, we used a hardcopy of the hydrography (vector) lines superimposed on the
ELM boundary cells overlay. Using the 1973 habitat map, we used the outline of the WCA’s
and the south and west coast of Florida to provide approximate tie points for superimposing the
model grid on the habitat map, with the hardcopy of hydrography providing guidancein
placement. The overlay of the two maps did not provide a perfect match, and four tie points
were selected to fine-tune the habitat map to the model cells overlay. Thesetie pointsincluded
the northern tip of WCA 1, the southeast corner of WCA 2B, adistinctive point of land in the
mid-Everglades in Florida Bay, and another distinctive point of land on the western-most point
of Cape Sable. Thesetie points were used as the linkage for awarp operation on the 1973
habitat map. With this map accurately reconciled to the grid, it was used to provide thetie
point coordinates for the 1900 and 1953 habitat maps (which were al based on the same grid

coordinate system)4. Figure 17 a-c show the ELM habitats at 1 km? resolution for the years
1900, 1953 and 1973.

12 In this (untransformed) format the rectangular cells were distorted into a vertically flattened image if viewed
in their original form (with a cell measuring a distorted average value 0.7197 km on a side).

13 Marie Pietrucha, Ken Rutchy, and Les Vilcheck of the SFWMD ERD provided the maps and associated data
filesfrom Arc/Info and ERDAS data bases.

14 The 1900 map had an origin that was 1 cell different from the other maps, and which was compensated for in
the operation.
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SFWMM data sets

The bulk of the spatial datathat we are using are from the SFWMD. Although we have
not found access to al of the data, much of the data arein computer databases within the
Didtrict.

Structure presence map.

This map (corresponding to the “on_map” variable in the unit model) contains
information on the presence of some structural attributes for each cell. The“on_map” isa
specia map in the SMP used primarily to identify non-void cellsthat areincluded in the
boundaries along with other attributes. The integer attributes for each cell in the map are the
following, with reallocation depending on the information the District provides us on the
structures:

0 = void, out of model boundaries

1-99 = control structure ID number if present anywherein cell
100-199 = cana reach ID number if canal is present anywherein cell
200-254 = reserved for future use

255 = cell in model bounds, without any structural attributes

Monitoring stations map.

Thismap (“monitor_map”) contains the presence/absence of monitoring stations for
surface water stage, groundwater stage, rainfall, and evaporation time seriesdata. Themap is
linked to the files of time series data (that may also include temperature, windspeed, etc) that
are collected at the Sites.

0 = void, out of model boundaries

1-49 = rainfall monitoring stations

50-59 = evaporation monitoring stations

60-174 = surface water monitoring stations, including those that are
defined as control structures (not al control structures monitor
level).

175-254 = ground water monitoring stations

255 = cell in model bounds, without any monitoring station

L evee seepage map.
This map indicates the cells that have potentia interaction with canal segmentsvia
age across levees. This seepage is defined asa* spatial flux” inthe ELM. It adds another
class of flux variable (see Spatial Modeling Package section) to the set of spatial fluxes of
overland flow and groundwater flow. The integer value of the cell isthe Canal reach ID of the
interacting canal. In the instance where severa canalswill have such interactions with a cell,
an exception table value is given, which points to the lookup data table containing the canal
reach |D’ s associated with seepage interaction with that cell. Note that this attribute of cell-
canal seepage includes cellsthat do not have a cana within their boundaries on a mixed
vector/raster diagram (Water Management section).
0 = void, out of model boundaries
1-49 = exception codes for that have interaction with more than one
candl
50-99 = reserved for future use
100-199 = canal reach ID

Canal-cell interaction map.

This map indicates the cells that have potentia interaction with canal segmentsvia
overland flow or (vertical) percolation (as opposed to horizontal flux of water vialevee
seepage). The vertical flow of water occurs as a non-spatial movement of water within a canal
unit model. Theinteger value of the cell isthe canal reach ID of the interacting cana. Inthe
instance where several canals will have such interactions with acell, an exception table value is
given, which points to the lookup data table containing the canal reach 1D’ s associated with
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interaction with that cell. Note that this attribute of cell-canal interaction includes cells that do
not have a canal within their boundaries on a mixed vector/raster diagram.
0 =void, out of model boundaries
1-49 = exception codes for that have interaction with more than one
cana
50-99 = reserved for future use
100-199 = canal reach ID

STATDTA datafile
We are using the latest static data (STATDTA) file from the SFWMD asthe primary
source of information on spatial distribution of several variables. Because those data are based

on a~10.25 mile? grid, we interpol ated the data given in that file to provide a smoother

transition among the 1 km? cellsin ELM15, We are currently seeking to update some of these
data from other sources. In particular, we lack much of the spatial data within the mangrove
zone of the ENP that was not included in the SFWMM. For the preliminary model runs, we
have made assumptions, stated in each category, on the changes in data from the mangrove
fringe to the coast.

Elevation map
All of our elevation data currently are fromthe STATDTA file. We assume alinear
decrease in elevation from the measurements used in the SFWMM at the edge of the mangrove
zoneto the (zero elevation) land bordering the Gulf of Mexico. Figure 18 indicates the spatial
distribution of land surface elevation.

Initial groundwater stage
All of our initial stage data currently are from the STATDTA file. We assume alinear
change in stage from the measurements used in the SFWMM at the edge of the mangrove zone
to the land bordering the Gulf of Mexico, with the latter estimates taken from the southern tip
of Florida.

Initial surface water depth
All of our initial stage data currently are fromthe STATDTA file. We assume alinear
change in stage from the measurements used in the SFWMM at the edge of the mangrove zone
to the land bordering the Gulf of Mexico, with the latter estimates assumed to be zero.

Rainfall basins
We are currently using the rainfall basinsidentified in the SFWMM for distributing
rainfall with the ELM boundaries.

Aquifer depth and permeability
All of these data currently are from the STATDTA file. We assume alinear changein
depth and permeability from the measurements used in the SFWMM at the edge of the
mangrove zone to the land bordering the Gulf of Mexico.

Spatial data lookup tables

For data collected at monitoring stations, all possible monitoring stations areincluded in
the fields for each datafile (for consistency). Thus, there will appear to be alarge amount of
missing data.

15 A computer program converts spatial (row-column) data from 80 columns per line (with multiple lines per
record) to as many columns asthere are cellsin a particular record (row ID). To prepare the data for interplation
of the ~10 km2 datato afiner 1 km?2 grid, the program then (optionally) creates awindow around each
SFWMM data value with void cells. This effectively creates a~10 km2 window of 9 ~1 km? cells, with the
central cell containing the non-void data. Either the original coarse scale data without voids or the modifed data
file are provided a header and for direct input in the GIS. The FORTRAN source code and executable file are
available from CEES. For datato be used in the ELM, the map with void cellsisinterpolated in MAP |1 based
on the nearest neighbor, non-void cellsin the surrounding quadrant.
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1) “interaction.tbl” = length of canal withininteracting cell. Each record contains
the following fields. The mode of interaction is Seep/Other, referring to a) either
seepage under aleveeinto adifferent basin (=attribute 1), b) overland flow or
percolation into the same basin as the canal (=attribute 2), or ¢) in the case of a
levee on both sides of acanal, seepage area * 2 (=attribute 3)

Cdl_ID CanaReachlD Arealnteract Seep/Other

T[142,207] T[50] m2 (float pt.) 1,2, 0or 3

2) “rain.tbl” = rainfall data collected at monitoring stations. One record per day,
with different field for each collection site.

3) “evap.thl” = evaporation data collected at monitoring stations. One record per
day, with different field for each collection site.

4) “sf_wat.thl” = surface water stage data collected at monitoring stations, including
control structures. One record per day, with different field for each collection
site.

5) “gd_wat.thl” = ground water stage data collected at monitoring stations,
including control structures. One record per day, with different field for each
collection site.

6) “levee.excpt” = Holds attributes of 1Ds of cellsthat have interaction with more
than one levee/canal.

7) “wind.tbl” = wind speed and direction data collected at monitoring stations,
including control structures. One record per day, with different field for each
collection site.

8) “rd_hum.tbl” = relative humidity data collected at monitoring stations, including
control structures. One record per day, with different field for each collection
Site.

9) “cloud.thl” = Cloudiness data (in tenths) collected at monitoring stations,
including control structures. One record per day, with different field for each
collection site. (not currently needed, but useful for calibration)

Model boundary conditions.

SFWMM output

Historically, L ake Okeechobee overflowed its banks during rainy periods and flooded
into the Everglades to the south, with overland sheet flow of water generally moving to the
southwest into Florida Bay over long time periods. The timing of and magnitude of water flow
from the lake, and fire propagation during dry periods, created the historical pattern of
vegetated landscape in the Everglades (Davis, 1943). The region below the lake is now the
managed Everglades Agricultura Area, altering both the timing of water flow and its nutrient
content. The urban areas to the east of the Everglades are a general draw on the water
resources of the Everglades hydrologic system. In order to reduce the complexity of this
version of the model, the ELM’ s boundaries exclude the agricultural and urban areas (see
Boundary Establishment Section). However, time series data on these source/sink regions are
needed to drive parts of the ELM.

Until the boundaries of ELM are expanded (in a second phase of the modeling effort
after Task 3), we will be taking output files from the SFWMM and linking those time series
datato the ELM. Many of the ELM boundaries are defined by levees, such as the conservation
areas, and therefore do not have complex boundary flows.

Most datawill come from SFWMM, and thus depend somewhat on that format.
1) Surface water time series for each boundary cell; associated nutrients and
particul ates
2) Saturated water time series for each boundary cell; associated nutrients and
particul ates
3) Canal flows (or heads) series for each boundary cell; associated nutrients and
particul ates
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ELM-SFWMM linkage table
This datafile provides the cell-cell linkages between the SFWMM grid and the ELM
grid. Onerecord for each boundary cell of ELM in following format: ELM bound cdll ID;
WMM cdl ID; factor; WMM cdll 1D; factor; WMM cell I1D; factor; WMM cell ID; factor. Each
factor isthe weighting factor determined from the proportion of the total areaof the ELM cell
that lies within the associated WMM cdll (max # WMM cells possible is 4).

MODEL INTERFACE

Introduction

Some of the most pressing problems facing wetlands have to do with the management
of resources in the face of multiple environmental impacts. Thereis general agreement that the
best management plans are those based on a thorough understanding of fundamental processes.
The transfer of the results from research projects to management solutions has not always been
straight forward. Many scientists are not adept at putting their resultsin aformat readily usable
by managers. Moreover, agency personnel can be overburdened with day-to-day management
activities and may see specific scientific results as too esoteric for their needs. Finaly, there
have been no widely accepted toolsto aid in the transfer of science to managers.

An exciting development in the communication and transfer of scientific resultsis anew body
of knowledge whose aim isto facilitate interaction among diverse disciplines. This new
discipline, known as"scientific visuaization" has asits foundation the adage "a pictureis
worth athousand words." Graphs, maps and figures to convey information had been used by
scientists for along time (Tufte, 1990). Scientific visualization is not just presenting resultsin a
graphic manner, it relates topics as diverse as statistics, mathematical modeling and data base
management. It allows the scientist to "step-into” the data, ssimplifying the use of data-sets and
enhancing analytical potential (Wright et al., 1990).

Recently several attempts have been made to create information systemsthat rely on this
relational view. The National Center for Supercomputing Applications at the University of
[llinois, Champagne-Urbanais one of the centersin the forefront of visualization theory (e.g.,
(Dwyer, 1990; Robinson, 1990). Several agencies have started projects for information
systems. Examples of these efforts can be found in the products generated by NOAA such as
COMPAS for coastal planning and assessment for the State of Texas (NOAA, 1990) and an
analysis system for shrimp harvest data (NOAA, 1989). A recent example of a coastal planning
and manageria tool has been developed by Reyes (1993). This HyperCard™ driven
information system compiles available environmental information for atropical coastal lagoon
in Mexico, combining it with several simulation models that can be used as managerial tools.

Our objective isto design a user-friendly, computer based information system to
facilitate the organization and communication of the ELM. This system is being constructed in a
manner to facilitate the addition of modules of information as they are developed (Figure 19).
This system makes use of recent developments in microcomputer technology and makes it
possible to deliver to the desk of the researcher or manager awide range of capabilities and data
that earlier could only be accessed on expensive and user-unfriendly mainframe computers.
The development of this interface would allow model runtime changes with no user
modifications to the program's code if the need for a potential change, and its range of possible
values, areidentified a priori. Thus, we worked on the development of a"front-end" user
interface to the model using the umbrella of the HyperCard programming language for
Macintosh computers.

We are assembling an interactive user-friendly interface that oversees and coordinates
the different programs, files and applications needed to run the Spatial Modeling Package
(SMP). Thisfront-end interface actsin amodular fashion in which each of the modulesisa
section of the SMP. The resulting HyperCard graphical interface (Figure 19) could take
modules of the C code and alow the user to manipulate parametersin the code by selecting a
topic and choosing aternatives from the graphical interface- without the user needing to
actually view and manipulate C language code. Thisinterface integrates the various software
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modules and runs the spatial model, with the most of the functions being transparent to the
user.

At the present we have built several part for thisinformation system which consists of:
a) an on-line reference manual for the Everglades Landscape Model that provides the guidelines
for use of the ELM unit model and describesits assumptions and logic; b) an interface that
explains and integrates the use of the database created for the habitat specific parameters; and ¢)
amanual describing and facilitating the file editing to the STELLA trandator (see Trandating
STELLA Models section) for the SMP and the files created with this program.

Computer Software

For the interactive data access system, we used computer hardware and software that
provides. 1) user transparency, 2) low learning curve 3) existing software capable of
generating graphic-oriented presentations. For preparation of the system, we chose the
programming language HyperCard™. HyperCard differs from other programming languages
because lines or strings of code are integrated to modules. These modules are organized in a
hierarchical structure and presented as objects or icons that activate the program or "stack,” by
positioning the pointer or cursor on the icon. These include color maps with active locations,
gpatially oriented information on pre-set maps or gradients, and graphical data selected and
combined by specific request from the user. The information and results from specific queries
are presented as different screens ("cards") that the user can "browse" at leisure, giving the
user the flexibility to explore different paths or combinations of objects. HyperCard takes an
additional step in the management of relational data compared to traditional systems by
allowing the user to view information in an large variety of contexts.

HyperCard™ is a software product for Apple Macintosh computer. With it, the
programmer can develop either his/her own application or use one of thousands of "stacks"
previously developed by others. Given its graphical approach, the applications (stacks) in
HyperCard are extremely easy to use. Each stack consists of a group of screensthat are
interactive and in which any type of information can be presented. Therefore, the screen can
contain maps, figures, graphs, text and/or sound. To gain access to more information the user
usually hasto click the cursor on specific areas of the screen. In essence aHyperCard stack isa
highly interactive, user-friendly database. Often a HyperCard stack is developed to be used as a
computerized information brochure. One step beyond thiswould be to use it as atutoria, a
training manual or catalog of information.

The presentation of scientific datafor the ELM in an easy to use appealing format for
the environmental manager can be accomplished using HyperCard as a presentation tool. The
information produced can be organized, prioritized and presented on agroup of stacks that
require minimum training and are highly interactive. The information is arranged on different
levels, from an introduction to the ELM to results and map scenarios of the various changes of
the simulation runs.

The multimedia database has been designed as a system or "shell" in which different
scenarios or particular training programs can be incorporated as modules. The shell could
continue to grow and be customized to cover requests or needs of special user-groups.

Results

We have devel oped a prototype shell and begun compilation of information and
programs used by the ELM. An average of thirty minutes of interactive viewing at this point
gives the user an opportunity to investigate the initial database, and the conceptual approaches
to the unit model along with ecological and mathematical assumptions. The data sets include
STELLA diagramsfor each of the unit model sectors and required inputs for initial conditions
and storage for the model variables aswell as editing capabilities for the STELLA-to-C
trandation program.

Early on this project (Costanza et al., 1992c) it was recognized the need to create an
overall program that could organize the s mulation package and provide an easy to use
interface. Given the numerous variety of formats, storage media and methods of transfer of the



42 ELM Task 2

datathat ELM required, a coordinating shell wasimperative to make it possibleto run
simulation scenarios by new users. For the purpose of efficiently evaluating environmental
aspects of the different management alternatives provided by ELM, both spatial and temporal, it
is necessary to gather the data at several levels. As an introductory part of thisinterface, three
stacks were design allowing the user to start the manipulation of inputs and trandation to the
gpatial code.

Unit model Interface

The STELLA unit model contains 16 sectors that were aggregated into several sections:
a) an introductory one (HyperELM), b) global inputs, c) water, d)primary producers and €)
biogeochemical processes (Figure 20). Each of these sections presents information that starts
from agenera level and leadsto the equations involved in the simulation. The user can look at
more details of a subject on acard by clicking on the icon or word on the card.

The HyperELM stack starts with an introduction (Figure 20). The next card (screen)
describes the objectives of the unit model followed by a card showing the general design
including agrid map of the study area. At yet adeeper level isadescription of how the spatial
modeling package interacts with the unit model and, most importantly, a"model structure”
screen which gives access to any of the four sections through a series of buttons on the bottom
of the screen.

Therest of the stacks (i.e., global inputs, water, primary producers and biogeochemical
processes) were devel oped following a hierarchical structure in which more detailed
information is presented as the user requests it by clicking in each card of the stack. This
hierarchy includes. a) an introductory card with the STELLA diagram of the sectors included;
b) a card with the theoretical explanation of the physical or biological processesinvolved in the
section; ¢) ageneral description of the equations and their interactions, along with assumptions
and interconnections; d) acard for each equation with explanation of terminology.

Theintroductory card allows the user to navigate among the different sections, while
the rest of the cardsin the stack have return paths to their own first section card. As an example
of the general structure of how each section was constructed, Figure 21 depicts this overall
view for some of the sectors that are in each section, and the path that the user can follow to
view all the available information. It is worth noting that one of the advantages of this interface
isthat all of the diagrams were copied from the STELLA symbolic representation of unit
model. The use of this diagram familiarizes the user with what actually he/she could seeif the
STELLA fileis open. Given the windowing environment of the Macintosh computer, the
user's guide can be run concurrently with the browsing and editing of the STELLA unit mode.
Thus, thisinterface acts as an on-line help for editing the unit model.

Database interface

The linked habitat database was structured around a central database which collects and
organizes the parameters incoming from 16 different datasets (see Data Organization section).
To facilitate the access and transfer of these parameters using the database, we also developed a
HyperCard stack that demonstrates the structure of the database. Additionally, it presents each
of the datasets, explains the types of data required by each, allows the user to input datainto
them, and presents a"dummy"” export file that could be input into the SMP. The database stack
includes three cards. Oneis an introductory card which describes the structure of the database;
the second card describes the individual data files and provides the user with access to the data
files throughout their own application program . The third card shows a schematic of how this
relational database collects the individual information for each sector and habitat in ELM.

Input Files Editor
The Spatial Modeling Package consists of severa folders that contain the C-code to run
the simulation, the STELL A-to-C trandator and the Data and Models folders. In order to
gpatially articulate and run the unit model component of ELM it was necessary to create a
STELLA-to-C trandator program. The use of thistrandator requires the user to edit several
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saturation deficit in the atmosphere above the boundary layer of the canopy (the mixed
Planetary Boundary Layer on the order of hundreds of metersin height). This (0-1)
decoupling factor isarelatively easily obtained measure that varies with gross canopy
morphology, with forests generally being near 0.2 (low decouple = strongly coupled) and
grasslands being near 0.8 (strongly decoupled).

The above mechanisms operate when the plants are not stressed due to water
limitations. When water does become limiting, the plants' stomata start to reduce the
conductance of water via stomatal closure, and transpiration can become tightly controlled by
thiswater limitation. The below equation determines the relative importance of these controls
in determining potentia transpiration:

pot transp = mac_water _stress fb* hyd transp_stoma*(1- mac_canop_ decoupl)
+(mac_water _stress _fb* hyd pot_evap* mac_canop_decoupl)

where mac_water_stress fbisthe (dimensionless) extent to which water isnot limiting,
hyd_transp_stoma is the conductance (med-1), mac_canop_decoupl is the dimensionless
decoupling factor, and hyd _pot_evap is the cal culated potential evaporation (med-1).

We present here the sensitivity analyses performed to analyze the influence of
transpiration-related coefficients on the water budget calculated in the unit model simulation.
The primary parameters of interest are those which influence the extent of control due to the
canopy type. Although we will be performing more detailed analyses on these parameters and
others, some broad-ranging conclusions may be drawn from this simple example. Depending
on the conductance, the decoupling factor can control whether the system is driven by the
physically derived controls versus the canopy related control. For anomina rate of
conductance, the decoupling factor may change the total transpiration to a moderate extent
Figure 22a-c. However, the decoupling factor has relatively little control over transpiration
when the conductanceislow (Figure 23a-c). When conductance is high, the system can be
dramatically altered by the plant’s control over transpiration, with the decoupling factor very
influentia (Figure 24a-c). Examining thisrelation further at high conductances, one sees that
thereis athreshold point where the interaction of water limitation and the canopy decoupling
factor determine the on/off point of transpiration loss (Figure 25); in instances where the
canopy is strongly coupled to the externa saturation deficit, the system can become water
limited due to the high plant conductance and drying down the system over prolonged periods,
and the macrophyte community (not shown in figure) reduces biomass dramaticaly.

SCALING | SSUES

Scaleisafundamental aspect of developing the Everglades Landscape Model (ELM),
and indeed isimportant to most objectivesin ecological research. As such, the toolsfor
analysis of scale dependence are critical. Inferential statistics based on assumed distributions
and independent observations are most widely known and used by researchers (ANOVA, t
tests, etc.). Spatia statistical methods, which incorporate dependence among sampling units,
are reasonably well developed for analysis of ecological data (Cressie, 1991; Ross et dl.,
1992), and areincreasingly used in avariety of studies to determine pattern and the influence of
scale on ecological research. Moreover, fractal geometry (Mandelbrot, 1983; Milne, 1992)
provides a useful tool to describe the complexity of spatial and temporal patternsin ecology.
We are using avariety of methods that have been devel oped, and are working with novel
statistics, to analyze some of the fundamental properties of spatial and temporal patternsin
gpatial modeling. Basing a number of our experiments on fractal characteristics, we are
exploring the changes of spatial and temporal properties as the scale (defined below) of the
model and analysis changes. This Scaling Issues section (reproduced from our Task 2.7
Report) describes a) the manner in which we plan to develop means by which to quantify the
extent of scale dependency in the devel opment of the ELM; and b) results to date, some of
which arein press (Costanza and Maxwell, in press).
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We are analyzing two aspects of scaling, temporal and spatial. Here we consider
gpatial scale to be described by both the grain (cell size) and extent (total area considered), and
have focused on changing the grain aspect of scale. Similarly, temporal scale refersto the
sampling frequency and the total duration under consideration. Although the combined effects
of temporal and spatial scaling will be of significant interest at alater stage of the project, we
treat them separately in this report on the initiation of the experiments.

We have initiated the investigation of tempora and spatial scaling issues associated with
the ELM. We anticipate that these scaling experiments will continue through the devel opment
of the ELM, providing greater levels of sophistication aswe progress. The purpose of this
summary isto indicate the types of investigations that we are conducting and some results to
date.

Soatial Scaling

First and foremost, we analyzed the relationship between spatial resolution of landscape
data and the predictability of the pattern in that data. We applied the anaysisto asimple null
“model” of observed landscape change, investigating effects of “model” resolution on
predictability of the landscape change. The basis of thisthesisisthat there are limitsto the
predictability of natural phenomenon at particular resolutions, and "fracta like" rules determine
how both data and model predictability change with resolution. During Task 3 we will proceed
to implement these concepts, and others, for analysis of scaling changes.

Temporal Scaling

Secondly, we are in the process of investigating methods to describe complex time
series of data (such asrainfall or cloudiness) with summary statistics that will allow usto use
datathat is available on avery fine scale and apply it in the model, on a coarser time scale, to
describe complex tempora phenomena. We seek to discern the inherent structurein the
phenomena by fractal analysisin sampling windows of varying size to determine the relative
complexity of thedata. A predictability index, based on deviation from the mean within sample
windows, issimilarly calculated for the data using the varying window sizes. After using this
information to seek the optimal window size for the data set, we propose to use various
summary statistics within the window intervals to characterize the datafor usein asimulation
model. In this case, we are seeking to reduce the computational complexity of amodel, more
closely matching the potentially coarser time step of amode with datathat was originaly on a
finer scale - while retaining the model behavior associated with the more complex data set. We
believe that it may be possible to develop general rulesfor characterizing time series of varying
degrees of complexities and patterns. If we are successful, this characterization may be of
utility in reducing some of the computational complexity of the ELM.

Process Complexity Scaling
At the interface of these two scaling issuesis the consideration of the scale of the

processes that are ssmulated within the unit model, or process complexity. Thislevel of scale
parallelsthat of spatial and temporal scale. When we refer to spatial grain in this report, we
refer to the grain of the landscape itself, usually in units of distance such as meters or
kilometers. Likewise, temporal scale refers to the sampling frequency of data or output of the
model. The scale of the modeled processes encompasses the degree of complexity that is
incorporated into the equations, and is directly analogous to the scale due to partitioning biotic
and abiotic components that are smulated. For example, this represents the difference between
modeling atree as an entity composed of many fine-scale components such as leaves, twigs,
roots, etc., and modeling it on the scale of one “big leaf”. Using the unit model parameterized
to a sawgrass habitat, we areinitiating model experimentsto analyze the effects of changing
aggregation levels of the processes and variables in the model.



46 ELM Task 2

Plans
We plan a series of experiments to investigate issues ranging from aggregation of
parameter estimates to spatial model response to varying cell size. These investigations include
the following projects:
Unit model:
1) Explore meansto summarize complex time series that are recorded at high temporal
resolution so that smaller data sets may be used in coarser scale models, more closely
matching the sampling frequency with the model time step. We have initiated this process,
and anticipate applying it to Everglades data if it is deemed to be beneficial. The use of this
process does not appear necessary for ELM data at thistime, but may be beneficial with
other data at alater phase of the modeling project.
2) Explorethe effects of aggregating state variables and process equations in the unit
model, determining the influence of smple averaging, other more complex mathematical
routines, partitioning, and/or combining these with recalibration. For most of the
ecological processes the unit model state variables are already fairly aggregated, perhaps as
much as desired for the current model objectives. Aswith 1) above, the analysis of optimal
aggregation may become more critical if/when greater degrees of process complexity are
built into the model, as may be desired by field researchersin later phases of the project, or
when simplified models are required for other purposes.
Spatial model:
3) Explore effects of changing spatial scale on the model output. The use of comparative
statistics such as those defined in this report will facilitate comparisons of model results
across scales. Wewould like to set up the spatial model for aregion such as Water
Conservation Area 2 that has data at a high spatial resolution (small grained), at least
compared to many other regions within the ELM boundaries. The influence of
heterogeneity in that landscape can be discerned viaimplementing the model at varying
gpatial grain sizes. Inherent in this exploratory analysisis the determination of appropriate
algorithms that may capture the within cell heterogeneity of land cover or other attributes.
Weighted averages of the process variables for avariety of plants represent a combination
of the unit model complexity and the behavior of the spatial model output. This scaling
issueis probably the most critical to the implementation of the ELM at this point, aswe

recognize the heterogeneity of vegetation cover within some of the 1 km2 cells.

Fractals, scaling and predictability

We hypothesized that an important determinant of the predictability of phenomenonis
the scale (resolution and extent) of the analysis. By resolution we mean “grain size” or the size
of the smallest unit of measure, with increasing resolution corresponding to finer grain. We
can distinguish two ways that resolution might affect predictability. Oneistheincreasing
difficulty of building predictive models at increasingly finer resolution. For example, the
position and velocity of individual moleculesin agasis highly unpredictable, but the
temperature of the gas (which is an average of these motions at a much cruder resolution) is
highly predictable. Likewise, it iseasier to predict general climate patternsthan it isto predict
the exact geographic location and timing of rainstorms (the wesather).

On the other hand, finer resolution allows more detail to be observed and internal
patterns in the data to be seen that may not have been observed at cruder resolutions. One
example are the warm core gyres that form in the Gulf Stream and were not observed until
remote sensing images of sufficiently fine resolution were available. Another exampleisthe
guest by the military to obtain high enough resolution satellite images to see the features (such
as tanks and airplanes) of interest to them that would not appear on lower resolution images.

Some phenomenon are known to vary in aregular way with resolution. For example,
the regular relationship between the measured length of a coastline and the resolution at which
it ismeasured is afundamental one behind the concept of fractals (Mandelbrot, 1983) and can
be summarized in the following equation:
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L =k s (D) ®

where:

L =the length of the coastline or other "fractal” boundary

s = the size of the fundamental unit of measure or the resolution of the measurement
k = ascaling constant

D =thefractal dimension

This convenient "scaling rule" has proved to be avery useful in describing many kinds
of complex boundaries and behaviors (Mandelbrot, 1983; Turner, 1987; Milne, 1988; Turner
et a., 1989; Olsen and Schaffer, 1990; Sugiharaand May, 1990). We hypothesized that this
same kind of relationship might exist between resolution and predictability (and possibly other
measures as well) and might be useful for developing scaling rules for understanding and
modeling. For initiation of the spatia scaling experiments, we tested this hypothesis by
calculating both data and model predictability for alandscape at anumber of different
resolutions.

Spatial scaling: Methods

Colwell (1974) applied information theoretic concepts to the problem of estimating the
degree of predictability of periodic phenomena. The method is similar to autocorrelation
analysis, except that it is applicable to both interval and categorical data and may thus be more
appropriate, for example, for comparing patterns of land cover. Predictability in this context
refersto the reduction in uncertainty about one variable that can be gained by knowledge of
another. For example, if the seasonal rainfall pattern in an areais predictable (e.g., thereis
always a severe dry summer), then knowing the time of year provides information about
rainfall (if it's summer, it must be dry). If thereis no relationship between rainfall and season,
time of year tells uslittle and the rainfall is relatively unpredictable from a knowledge of time of
year.

M easurement of Predictability: Spatial sets

These techniques can also be applied to spatial data. In this application, oneis
interested in the degree to which the uncertainty about the category of a particular pixel is
reduced from knowledge of other aspects of the same scene, or from knowledge of aspects of
other, related, scenes. There are several aspects of a scene that might be used as predictors.
We discuss two implementations based on 1) the state of adjacent pixelsin the same scene,
which we call "auto-predictability” or P5 and 2) the state of corresponding pixelsin other,
related scenes, which we call the "cross predictability” or P.. Other combinations of these two
and higher level analyses (i.e.. adjacent pixel pairs, triplets, etc. or multiple cross comparisons)
are also possible and useful for various purposes (Turner et al., 1989).

The method in general can determineif there are regularitiesin aspatial data set, ranked
on ascae from O (unpredictable) to 1 (predictable), and the answer can be interpreted asthe
degree of departure of the scene or comparison between scenes from arandom (totally
unpredictable) pattern.

To estimate predictability, one first assembles a contingency matrix with states or
conditions of the pixels along the left axis, and corresponding states of other pixels aong the
top. For auto-predictability the categoriesin amap are listed on the left and aong the top of a
matrix. The numbersin the matrices represent the frequency of occurrence in the mapped data
of the category (or category pair, triplet etc. for higher level analysis) listed along the top of the
matrix lying adjacent to the category listed along the left. Thisyieldsinformation about how
predictable the patterns of adjacency are in the sample map data.

The contingency matrix can be any set of meaningful spatia relationships in the data.
For example, another way of setting up the matrix isto define the predictability of one scene
given another scene. For example, we might want to know the predictability of alandscapein
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one year given information in some previous year(s), or we might want to know the
predictability of areal landscape compared to alandscape model's output. We call thisthe
"cross' predictability, because it provides information on the predictability of a given pixel's
category given knowledge of the category of the corresponding pixel in another scene.
Following Colwell (1974), we define N;j to be the elementsin the contingency matrix
(i.e., the number of timesin the data that a pixel of category i was adjacent to one of category |
for auto-predictability analysis). Define X; asthe column totals, Y; asthe row totalsand Z as

the grand total, or:
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i=1







ELM Task2 51

Decreasing the resolution (increasing the grain) of a spatial data set involvesthe
repetitive resampling of a specified number of smaller cellsinto larger cells. Anayticaly, this
is accomplished by moving aresampling matrix (whose size is the number of rows and
columns of the origina data needed to make asingle cell in the new raster) through the original
raster. The cell valuesfalling within the resampling matrix are tabulated and used to determine
the value of the appropriate larger cell in the new, coarser resolution raster. We experimented
with several methods of resampling or aggregating the spatia data. The first method, which
we call proportional aggregation assignsthe cell valuesin the coarser-grain raster according to
the most dominant category found within the resampling matrix. A second method, termed
random aggregation assigns new categories by randomly choosing from the categories found
within the resampling matrix. The magjor difference between the two methodsis that rare
categories are more likely to be preserved when the data is resampled with the random
aggregation scheme.  While the choice of aggregation scheme can be significant in many
gpatial analysis, we found that the aggregation scheme made little difference to the results of
our particular experiments. We settled on aversion of the random aggregation schemethat is
both ssimple and suits our immediate needs. In thisversion, aggregation takes place in steps. In
each step the original map is aggregated using a 2x2 resampling matrix yielding an aggregated
map with 1/4 the number of cells of the original. In each 2x2 resampling matrix we choose the
category of the northwest cell as the category for the cell in the aggregate map. This process
was repeated on the new aggregate map to yield a series of maps each with 1/4 the total number
of cells of the one preceding it in the series. Figure 26 shows the results of this process for the
South Florida, 1973 data set.

We developed algorithmsin aparallel version of the C programming language to
calculate auto and cross-predictability for mapped data on Inmos Transputers (aform of RISC
based parallel processor) on a Macintosh (Costanzaand Maxwell, 1991). Transputers are
extremely fast for this sort of calculation. For example, for the South Florida data (a’576 x 400
array), caculation of auto-predictability and printing results to atext file took approximately
2.4 seconds using a Macintosh Ilci with 4 transputerst”.

Spatial scaling: Results

Auto-Predictability Experiments

We cdculated P; for several different years and at five different resolutions. We started
with the maximum resolution of the data and gradually degraded it by aggregating pixels. In
each step we halved the resolution by aggregating 2x2 blocks of pixels at the previous
resolution into single pixels. Resolution is frequently indicated as the length of aside of acell
(pixe), with higher or finer resolution corresponding to smaller cell (pixel) sizes. For
example, LANDSAT satellite data has 30 meter resolution, while SPOT satellite dataisfiner
resolution at 18 meters. In our plots we wanted higher resolution to correspond to higher (not
lower) numbers, so we measured resolution as the number of cells per km2. Fifty meter cells
would have a resolution of 400 cells’km2, while 200 m cells would have aresolution of 25

cellgkm2.
Wefit the equation:
P=kr (1-Dp) @

where:
P = the gpatia predictability (Parefersto auto-predictability, P refersto cross-predictability)

17The algorithms also work on serial machines, only slower. Each tranputer is approximately the speed of a
SUN Sparc station so the 4 transputer time is about four times the speed one would expect on a Sparc station.
Contact Tom Maxwell for more information about using transputers for spatial analysis.
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r = the resol ution measured as the number of cells/km?2
k = ascaling factor
Dp = thefractal predictability dimension (dimensionless)

by first transforming it into log-log form:
In (P)) = In (k) + (1-Dp)In (1) €)

and using standard linear regression analysisto solve for the parametersk and Dp

The results are summarized in Table 2,which indicates the high R2 for this relationship
for both of the study sites.

Table2. Fractal auto-predictability dimension (given as 1-Dap), scale constant (k),

adjusted R2, and degrees of freedom (df) for auto-predictability (P5) from regression
of equation 3. ** indicates significant at the .01 level, * indicates significant at the .05

level.
Year k (1-Dap) adj R? df
1900 0.6364 0.111 .999** 4
1953 0.6383 0.085 .988** 4
1973 0.6250 0.096 .981** 4
al years 0.6332 0.097 .958* * 14

Cross-Predictability Experiments
We calculated P. by comparing maps from the 3 different years. Thisisanalogousto a
simple "null model” that predicts land use patterns for one time from patterns at some previous
time or times. This“model” includes no information on the underlying processes of change,
but we were interested in how changing the resolution of the maps affected the predictability
and the “null model” of no changeis an interesting point of reference. Wefit equation 3 to the
data and the results are shown in Table 3.

Table 3. Fracta cross-predictability dimension (stated as 1-Dp), scale constant (k),
adjusted R2, and degrees of freedom (df) from regression of equation 3 for cross-
predictability (Po). ** indicates significant at the .01 level, * indicates significant at the
.05 level.

Year k (1Dp)  afiR?  df
1900/1953 0.5764 -.011 943 * 4
1953/1973 0.4936 -.017 78* 4

Results of both the auto and cross-predictability experiments are plotted together on a
log-log scalein Figure 27. The strong linearity of the relationship for all casesis apparent, as
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isthe fact that auto-predictability (P5) increases with increasing resolution while cross-
predictability (Pc) decreases slightly with increasing resolution, although with asmaller Dp,.
These results are consistent with our original hypotheses.

In addition, this“null model” isof limited real usefulness since it embodies none of the
underlying processes that caused the land use changes. I1n the more general case of dynamic
landscape models, or modelsin general, we would not expect such high initial values of
predictability, and would expect the predictability to fall more quickly with resolution. We are
currently building the ELM to be one dynamic spatial to be used in testing this hypothesis,
which can be summarized in Figure 28.

Temporal scaling

Time series of data have varying degrees of complexity and pattern, which resultsin
varying success in using summary statistics to characterize the data. Rainfall, cloudiness, and
solar insolation are examples of some of the time series data that may have different underlying
processes and pattern. Biological processes such as carbon fixation and nutrient uptake may be
measured on afine scale, but otherwise need to be characterized on a coarser scale. These data
may exist on finer scale (higher sampling frequency) than that desired for a coarser scale
simulation. There are several approaches to using datafrom complex time series for smulation
or other purposes, ranging from using al of the information to using ssmple averages over
specific timeintervals. A problem with the former is the potential for excessive computational
complexity associated with using al of the information on afiner scale. With the latter
approach, simple averages have the potentia to lose significant information and have
significant error in aggregation that depends on the degree of nonlinearity, the extent to which
patterns are reciprocal, etc. Thus, thereisaneed to develop rulesfor scaling time series data of
ecological processes from fine scale measurements to the coarser scales that the ELM and other
simulation models may use in their basic time step.

We are devel oping algorithms with which to determine the appropriate sampling scale
of atime series. If thereisarecurring pattern in the data, a Fourier transform can be used to
characterize that pattern. However, afrequency analysis depends on the existence of that
periodicity. Such a pattern may often emerge in coarse scale phenomena such as annual cycles,
but the aperiodic information at finer temporal scaleswould belost. In the case where the
information is not periodic, we need other measures to sample and characterize the data.

For this investigation, we want to use a variety of toolsin an exploratory analysis. We
wrote a program?8 (in C) to read the data and subsample it a user defined intervals, the width
of which may range from aminimum of 20 units to the number of pointsin the dataset. The
fractal dimensions of the datain the window intervals are determined for the entire data set,
along with several summary statistics. A predictability index, based on Colwell (1974) as
described above for the spatial cases, was also calculated for the data using the number of time
intervals defined by the chosen window size. The predictability index is based on the sampled
point N being in one of 4 states, the state depending on the normalized distance of the point
from the mean X of itstime interval i:

| Nk - X| |
X

Satel: O£ £ 0.05

|Nk' X1|

N - X
Sate3: 0.10 < % £0.15

Sate?2: 0.05< £ 0.10

18 S, Hutchinson of the University of South Carolinawrote the code for determining the fractal dimension. We
modified the code for our other purposes.
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g . | Nk B Xll

ate4: 0.15< T
wherek isthe total number of points. Thus, this provides a measure of how consistent, or
predictable, the data are within each interval of the entire data set. The size of the windows and
total number of points determines the number of time intervalsi within the k values of thetime
series. At awindow size equal to the number of pointsin the series, the predictability is 1.0 by
definition in that thereis only one “sampled” time period. With the distances defined above, a
random data set has a predictability of 0.5, (a value which is dependent on the arbitrary
distance values chosen in this development example). The predictability values are plotted
against window size, with the (changing) slope of the curve depending on the pattern of the
data.

The fractal dimension for each interval width indicates the degree of complexity within
theinterval, and a mean, standard deviation, and coefficient of variation are available to
characterize theinterval. At this point, we hope to evaluate the efficacy of using different
measures of central tendency and variance for the intervals. These statistics are to be used to
develop a set of objective rulesfor determining the optimal width of asampling window for
individual datasets. The basic objective isto merely reduce the error associated with
nonlinearities within sampleintervals. A narrow window is needed for data that has a
complex, non-random pattern over short intervals; awide window may be used for data that
behavesin amore linear manner. Depending on the data and on the equationsin the simulation
that utilize the data, this summary can be made in different ways. The smplest isthe mean
within each window, but measures of dispersion may be needed or desired. We are currently
determining if some of these relatively ssmple summary statistics can be used effectively in
aggregating a complex time series of data for a coarser scale of input to asimulation run.

The time series data are analyzed in this manner for the range of windows
possible/desired. We used avariety of different data sets for analysis, ranging from random
distributions to rainfall data from a station in south Florida. The changing slope of plots of the
predictability versus window size provide an indication of pattern of the data (Figure 29). The
plots of fractal dimension for each window interval, as they change with varying window size,
can be used to evaluate the changing complexity as the sampling interval scale changes (Figure
30). The mean associated with those window sizes are provided for comparison. These plots
are very preliminary results, using algorithms that will be examined more thoroughly and likely
be modified. However, thisis presented to indicate one of the directions that some temporal
scaling issues may be addressed regarding the ELM.

Process complexity

One of the fundamental aspects of model development is recognizing the degree of
process complexity needed for the stated objectives. We are establishing a set of model
experiments to anayze the effects of aggregation of parameters and mathematical relationships
in the equations of the unit model. Rastetter et a. (1992) provided a rigorous examination of
different methods in approaching the issue of aggregating fine-scale knowledge to predict
coarse scale phenomenain simulation models. After an evaluation of the degree of non-
linearity in the process, they indicated that there are two reasonable means to accommodate
aggregation of processes that have significant non-linearities which pose potential error in the
model estimates. One method isa partial transformation using an expectation operator that is
based on knowledge of the probability distribution of the fine scale process. Another isthe use
of further partitioning of processes. Where adequate data are available, calibration provides a
very attractive means by which to capture the aggregate behavior of the fine scale processes on
acoarse scale. Rastetter et al. (1992) point out that it may be very beneficial to combine a
process of disaggregating some fundamental processes where appropriate in conjunction with a
recalibration.

Using amodular framework for the unit model development, we have a modeling tool
that is amenable to the changing and analyzing process complexity. The unit model is designed
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to be able to be run at varying spatial scales and for widely varying habitat types. The base
configuration can be readily disaggregated to incorporate more detail on constraints, feedbacks,
or other aspects of the simulation. For habitats as diverse as fresh marshes and upland forests,
we can evaluate the degree of sengitivity of the parameter set using sensitivity analysis routine
built into the STELLA modeling software. The sengitivity may vary across habitat types,
showing which aspects of the unit model may need modification to be truly general for
implementation across widely varying systems.

A particular feedback or parameter may largely drive a process and value of astock in
one system, but be comparatively unimportant in another. For example, the unit model’s
simulation of organic material decomposition and remineralization of nutrients currently is
constrained by severa factors, including temperature, moisture and substrate quality. We
implicitly incorporate the redox potentia in the sediments using asimple water depth - aerobic
zone relation and generalized rate parameters for aerobic and anaerobic environments. This
appears to be adequate for our current objectives concerning the stock of nutrients within a
broad zone of sediment, but would require more detailed relationships for finer scale model
output concerning the fluctuations in nutrient availability in different layers of the root zone.
An evaluation of the plant growth response to changes in nutrient availability would indicate
whether such modifications are useful toward increasing the precision of the output. Model
components such as this may be important in an intermittent wetland habitat if very fine
resolution isimportant, but comparatively unimportant in an upland forest. Such
determination, using standard tools of analysis on a modular modeling framework, will
congtitute the basic design of the scaling of the unit model complexity.

We anticipate that disaggregation of the unit model will not be necessary for the current
objectives of the ELM. However, future simulation needs may necessitate some reformulation
of the process complexity of the unit model. At that stage, we want to have the meansto
evaluate the resulting behavior of the unit model with and without the more complex model
structures.
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Figure 1. Landscape pattern of habitat types found in south Floridain 1973, the present-day major
canal/levee locations, and the cells composing the Everglades Landscape Model (ELM) boundary.

The legend shows an exampl e of the 1 km2 cell size used in ELM and the number of cells having

each habitat type. The habitat types map layer is a 1km2/cell raster representation of the data from
Costanza (1979); the ELM uses 14 habitat types, omitting the urban and agricultural regions.
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Figure 2. The basic structure of the ELM. Each cell has a (variable) habitat type,
which is used to parameterize the unit model for that cell. The unit model
simulates ecosystem dynamics via the interactions of biotic and abiotic
components. Nutrients and suspended materials in the surface water and saturated
sediment water are fluxed between cells in the domain of the spatial model.
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Figure 3. The basic hydrologic variables and flowsin the ELM. Within each
model cell, vertical flows are simulated by the unit model that is parameterized for
the cell's habitat. Horizontal fluxes of water between cells are within the domain
of the spatial model, and depend on head differences between cells.
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within one cell and parameterized for the cell's habitat. Hydrology isimportant in the vertical fluxes shown and the
unshown horizontal fluxes of materials from cell to cell. State variables are enclosed within rectangles, and those that
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different dynamics. Although not shown, both nutrients are involved in uptake and mineralization processes.
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Figure6. The STELLA® dialog box containing the relationship between the
unsaturated moisture proportion (Input, along the X axis) and the hydraulic
conductivity (Output, shown ontheY axis).
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Lake
Okeechobee

NS
R
?

Everghdes I || /

Natonal Park
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included within the boundaries, and the network of major canals and leveesin
south Florida. The SFWMM simulation includes all of the canals/levees shown.
The distribution of 24 transputer processors is shown by the dotted squares. Note

that several processors areidlein this preliminary configuration.
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Figure 9 canal;. Spatial articulation of a canal interacting with unit cells. Canal is shown as shaded hypervolume,
with the unit model simulating ecological dynamics within the entire volume between upstream and downstream
structures of acanal. The areal extent of interaction with unit cellsA, C, D, E, F, and H are required for fluxing water
and nutrients between the cana and unit cellsin the spatial model. Canal depth and width, and height of canal surface

water above the sediment are exaggerated in size.
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Figure 10. Different combinations of canals and levees that are ssmulated in the
ELM.
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attributes to cells near a canal/levee configuration.
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Figure 15. A hypothetical diagram of the distribution of computer processors for a
parallel processing architecture versus a standard serial architecture. The
computational load of running a unit model in the 256 cells shown is distributed
over 16 (24 in ELM) high speed RISC chipsin the transputer architecture. Inthe
serial architecture such as a standard workstation, runtimes are longer by a factor
close to the extent of load partitioning in parallel.
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Figure 17a. Habitat types within the ELM boundaries during the period around 1900. Also indicated
are the canals present during thistime. Numbersin parentheses within the legend box indicate the
number of cells that have each attribute.
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cells that have each attribute.
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Figure 18. Elevation of land surface within the boundaries of the SFWMM. The 2X2 mile
grid data was interpolated to the 1 kmZ grid scale shown.
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Figure 22a. Nominal canopy conductance=0.1 mol m-2 sec'1.

Potential evaporation and potential transpiration (m/d) from plants under no water
stress when perfectly decoupled (hyd pot_evap) and perfectly coupled
(hyd_transp_stoma) from/to the air outside of boundary layer. (Curve not smooth
due to discontinuities in weather data).
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Figure 22b. Nominal canopy conductance=0.1 mol m-2 sec-1, high mac_canop_decoupl=0.8.
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated storage
(sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture availablein
any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zone is present when the
saturated storage head is at sediment elevation.)

b. mac_canop_decoupl=0.8 (grassland). Transpiration (sat_wt_transp and unsat_wt_trans),
evaporation (Sf_wt_evap_cm), and total ET (hyd ET total cm) in cm/day. Pan evaporation
data from Big Cypress station shown relative to simulated evaporation.
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Figure 22c. Nominal canopy conductance=0.1 mol m-2 sec1, low mac_canop_decoupl=0.2
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated storage
(sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture availablein
any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zone is present when the
saturated storage head is at sediment elevation.)

b. Nominal case: mac_canop_decoupl=0.2 (forest). Transpiration (sat_wt_transp and
unsat_wt_trans), evaporation (Sf_wt_evap_cm), and total ET (hyd ET total _cm) in cm/day.
Pan evaporation data from Big Cypress station shown relative to simulated evaporation.



Figure 23a. Low canopy conductance=0.05 mol m-2 sec-1.

Potential evaporation and potential transpiration (m/d) from plants under no water
stress when perfectly decoupled (hyd_pot_evap) and perfectly coupled
(hyd_transp_stoma) from/to the air outside of boundary layer. (Curve not smooth
due to discontinuities in weather data).
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Figure 23b. Low canopy conductance=0.05 mol m-2 sec1, high mac_canop_decoupl=0.8.
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated
storage (sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture
available in any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zoneis
present when the saturated storage head is at sediment elevation.)

b. mac_canop_decoupl=0.8 (grassland). Transpiration (sat_wt_transp and unsat_wt_trans),
evaporation (Sf_wt_evap_cm), and total ET (hyd ET total cm) in cm/day. Pan
evaporation datafrom Big Cypress station shown relative to simulated evaporation.
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Figure 23c. Low canopy conductance=0.05 mol m-2 sec-1, low mac_canop_decoupl=0.2.
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated
storage (sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture
available in any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zoneis
present when the saturated storage head is at sediment elevation.)

b. mac_canop_decoupl=0.2 (forest). Transpiration (sat_wt_transp and unsat_wt_trans),
evaporation (Sf_wt_evap_cm), and total ET (hyd_ET_total_cm) in cm/day. Pan
evaporation data from Big Cypress station shown relative to simulated evaporation.
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Figure 24a. High canopy conductance=0.2 mol m-2 sec'1.

Potential evaporation and potential transpiration (m/d) from plants under no water
stress when perfectly decoupled (hyd pot_evap) and perfectly coupled
(hyd_transp_stoma) from/to the air outside of boundary layer. (Curve not smooth
due to discontinuities in weather data).
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Figure 24b. High canopy conductance=0.2 mol m-2 sec1, high mac_canop_decoup!=0.8.
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated
storage (sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture
available in any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zoneis
present when the saturated storage head is at sediment elevation.)

b. mac_canop_decoupl=0.8 (grassland). Transpiration (sat_wt_transp and unsat_wt_trans),
evaporation (Sf_wt_evap_cm), and total ET (hyd ET total cm) in cm/day. Pan
evaporation datafrom Big Cypress station shown relative to simulated evaporation.
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Figure 24c. High canopy conductance=0.2 mol m-2 sec'1, low mac_canop_decoupl=0.2.
a. Head height (m) of available water in surface storage (Sf_wt_Head) and saturated

storage (sat_water_hd) relative to sediment height (sed_elev); the proportion of moisture
available in any unsaturated zone is shown by unsat_moist_prp. (No unsaturated zoneis
present when the saturated storage head is at sediment elevation.)
b. mac_canop_decoupl=0.2 (forest). Transpiration (sat_wt_transp and unsat_wt_trans),
evaporation (Sf_wt_evap_cm), and total ET (hyd ET total cm) in cm/day. Pan
evaporation datafrom Big Cypress station shown relative to simulated evaporation.
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Figure 25. With high canopy conductance of 0.2 mol m2 sec'1, total evaporation and
transpiration loss under varying canopy decoupling parameters of 0.2, 0.3, 0.4, 0.5, and 0.6 for
runs 1 through 6, respectively. Water becomes limiting in the unsaturated zone with
decoupling factors of 0.4 and smaller, and transpiration occurs sporadically and rapidly.
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Figure 26a. Example of the random, sequential aggregation scheme applied to the
1973 south Florida data four successive times. These four aggregations, along with
the original, make up the five different resolutions used in the analyses. The

resolutions used were 1.333 cells’km?2 (original data), 0.333 (26b), 0.083 (26¢),
0.021 (26d), and 0.005 (26€) cellskmZ.
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Figure 26b. South Florida at 0.333 cells/km?.




Figure 26¢. South Florida at 0.083 cells/km?2.
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Figure 26d. South Florida at 0.021 cells/km?.
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Figure 26e. South Florida at 0.005 cells’/km2.
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Figure 27. Log of resolution vs. log of predictability for the Kississmee/Everglades land
usedata. Plot shows both auto-predictability (AP) indicating internal pattern in the data for
three different years, and cross-predictability (CP) indicating pattern matching between null
models of prior land use maps and a particular map.
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Figure 28. Hypothetical relationship between resolution and predictability of data and
models. Data predictibility is the degree to which the uncertainty about the state of
landscape pixelsis reduced by knowledge of the state of adjacent pixelsin the same map.
Model predictability is the degree to which the uncertainty about the state of pixelsis
reduced by knowledge of the corresponding state of pixelsin output maps from various
models of the system.
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Figure 29. Raw time series data (Ieft column) and the relation between
predictability and resolution for each data set (right column).
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Figure 30b. Fractal dimensions of south Floridarainfall data.
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